
Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

	

Lecture	
 5:	
 Index	
 Compression	

1	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Overview	

❶  	
 Recap	
 	

❷  	
 Compression	

❸  	
 Term	
 sta*s*cs	

❹  Dic*onary	
 compression	

❺  Pos*ngs	
 compression	

	

2	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Outline	

❶  	
 Recap	
 	

❷  	
 Compression	

❸  	
 Term	
 sta*s*cs	

❹  Dic*onary	
 compression	

❺  Pos*ngs	
 compression	

	

3	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

4	

Blocked	
 Sort-­‐Based	
 Indexing	

4	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

5	

MapReduce	
 for	
 index	
 construc(on	

5	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

6	

Dynamic	
 indexing:	
 Simplest	
 approach	

§  Maintain	
 big	
 main	
 index	
 on	
 disk	

§  New	
 docs	
 go	
 into	
 small	
 auxiliary	
 index	
 in	
 memory.	

§  Search	
 across	
 both,	
 merge	
 results	

§  Periodically,	
 merge	
 auxiliary	
 index	
 into	
 big	
 index	

6	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

7	

Take-­‐away	
 today	

§  Mo*va*on	
 for	
 compression	
 in	
 informa*on	
 retrieval	
 systems	

§  How	
 can	
 we	
 compress	
 the	
 dic*onary	
 component	
 of	
 the	

inverted	
 index?	

§  How	
 can	
 we	
 compress	
 the	
 pos*ngs	
 component	
 of	
 the	

inverted	
 index?	

§  Term	
 sta*s*cs:	
 how	
 are	
 terms	
 distributed	
 in	
 document	

collec*ons?	

7	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Outline	

❶  	
 Recap	
 	

❷  	
 Compression	

❸  	
 Term	
 sta*s*cs	

❹  Dic*onary	
 compression	

❺  Pos*ngs	
 compression	

	

8	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

9	

Why	
 compression?	
 (in	
 general)	

§  Use	
 less	
 disk	
 space	
 (saves	
 money)	

§  Keep	
 more	
 stuff	
 in	
 memory	
 (increases	
 speed)	

§  Increase	
 speed	
 of	
 transferring	
 data	
 from	
 disk	
 to	
 memory	

(again,	
 increases	
 speed)	

§  [read	
 compressed	
 data	
 and	
 decompress	
 in	
 memory]	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

is	
 faster	
 than	
 	
 [read	
 uncompressed	
 data]	

§  Premise:	
 Decompression	
 algorithms	
 are	
 fast.	

§  This	
 is	
 true	
 for	
 the	
 decompression	
 algorithms	
 we	
 will	
 use.	

9	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

10	

Why	
 compression	
 in	
 informa(on	
 retrieval?	

§  First,	
 we	
 will	
 consider	
 space	
 for	
 dic*onary	

§ Main	
 mo*va*on	
 for	
 dic*onary	
 compression:	
 make	
 it	
 small	

enough	
 to	
 keep	
 in	
 main	
 memory	

§  Then	
 for	
 the	
 pos*ngs	
 file	

§ Mo*va*on:	
 reduce	
 disk	
 space	
 needed,	
 decrease	
 *me	
 needed	

to	
 read	
 from	
 disk	

§  Note:	
 Large	
 search	
 engines	
 keep	
 significant	
 part	
 of	
 pos*ngs	
 in	

memory	

§  We	
 will	
 devise	
 various	
 compression	
 schemes	
 for	
 dic*onary	

and	
 pos*ngs.	

10	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

11	

Lossy	
 vs.	
 lossless	
 compression	

§  Lossy	
 compression:	
 Discard	
 some	
 informa*on	

§  Several	
 of	
 the	
 preprocessing	
 steps	
 we	
 frequently	
 use	
 can	
 be	

viewed	
 as	
 lossy	
 compression:	

§  downcasing,	
 stop	
 words,	
 porter,	
 number	
 elimina*on	

§  Lossless	
 compression:	
 All	
 informa*on	
 is	
 preserved.	

§ What	
 we	
 mostly	
 do	
 in	
 index	
 compression	

11	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Outline	

❶  	
 Recap	
 	

❷  	
 Compression	

❸  	
 Term	
 sta*s*cs	

❹  Dic*onary	
 compression	

❺  Pos*ngs	
 compression	

	

12	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

13	

Model	
 collec(on:	
 The	
 Reuters	
 collec(on	

13	

symbol	
 sta*s*cs	
 value	

N	

L	
 	

M	

	

	

	

T	

documents	

avg.	
 #	
 tokens	
 per	
 document	

word	
 types	

avg.	
 #	
 bytes	
 per	
 token	
 (incl.	
 spaces/punct.)	

avg.	
 #	
 bytes	
 per	
 token	
 (without	
 spaces/punct.)	

avg.	
 #	
 bytes	
 per	
 term	
 (=	
 word	
 type)	

Tokens	

800,000	

200	

400,000	

	
 6	

4.5	

7.5	

100,000,000	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

14	

Effect	
 of	
 preprocessing	
 for	
 Reuters	

14	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

15	

How	
 big	
 is	
 the	
 term	
 vocabulary?	

§  That	
 is,	
 how	
 many	
 dis*nct	
 words	
 are	
 there?	

§  Can	
 we	
 assume	
 there	
 is	
 an	
 upper	
 bound?	

§  Not	
 really:	
 At	
 least	
 7020	
 ≈	
 1037	
 different	
 words	
 of	
 length	
 20.	

§  The	
 vocabulary	
 will	
 keep	
 growing	
 with	
 collec*on	
 size.	

§  Heaps’	
 law:	
 M	
 =	
 kTb	

§ M	
 is	
 the	
 size	
 of	
 the	
 vocabulary,	
 T	
 is	
 the	
 number	
 of	
 tokens	
 in	
 the	

collec*on.	

§  Typical	
 values	
 for	
 the	
 parameters	
 k	
 and	
 b	
 are:	
 30	
 ≤	
 k	
 ≤	
 100	
 and	

b	
 ≈	
 0.5.	

§  Heaps’	
 law	
 is	
 linear	
 in	
 log-­‐log	
 space.	

§  It	
 is	
 the	
 simplest	
 possible	
 rela*onship	
 between	
 collec*on	
 size	

and	
 vocabulary	
 size	
 in	
 log-­‐log	
 space.	

§  Empirical	
 law	

15	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

16	

Heaps’	
 law	
 for	
 Reuters	

Vocabulary	
 size	
 M	
 as	
 a	

func*on	
 of	
 collec*on	
 size	

T	
 (number	
 of	
 tokens)	
 for	

Reuters-­‐RCV1.	
 For	
 these	

data,	
 the	
 dashed	
 line	

log10M	
 =	

0.49	
 ∗	
 log10	
 T	
 +	
 1.64	
 is	
 the	

best	
 least	
 squares	
 fit.	

Thus,	
 M	
 =	
 101.64T0.49	

and	
 k	
 =	
 101.64	
 ≈	
 44	
 and	

b	
 =	
 0.49.	

16	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

17	

Empirical	
 fit	
 for	
 Reuters	

§  Good,	
 as	
 we	
 just	
 saw	
 in	
 the	
 graph.	

§  Example:	
 for	
 the	
 first	
 1,000,020	
 tokens	
 Heaps’	
 law	
 predicts	

38,323	
 terms:	

	
 	
 	
 	
 44	
 ×	
 1,000,0200.49	
 ≈	
 38,323	

§  The	
 actual	
 number	
 is	
 38,365	
 terms,	
 very	
 close	
 to	
 the	

predic*on.	

§  Empirical	
 observa*on:	
 fit	
 is	
 good	
 in	
 general.(through	

calcula*on)	

17	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

18	

Zipf’s	
 law	

§  Now	
 we	
 have	
 characterized	
 (describe)	
 the	
 growth	
 of	
 the	

vocabulary	
 in	
 collec*ons.	

§  We	
 also	
 want	
 to	
 know	
 how	
 many	
 frequent	
 vs.	
 infrequent	

terms	
 we	
 should	
 expect	
 in	
 a	
 collec*on.	

§  In	
 natural	
 language,	
 there	
 are	
 a	
 few	
 very	
 frequent	
 terms	
 and	

very	
 many	
 very	
 rare	
 terms.	

§  Zipf’s	
 law:	
 The	
 ith	
 most	
 frequent	
 term	
 has	
 frequency	
 cfi	

propor*onal	
 to	
 1/i	
 .	

§  	
 	
 	

§  cfi	
 is	
 collec*on	
 frequency:	
 the	
 number	
 of	
 occurrences	
 of	
 the	

term	
 ti	
 in	
 the	
 collec*on.	

18	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

19	

Zipf’s	
 law	

§  So	
 if	
 the	
 most	
 frequent	
 term	
 (the)	
 occurs	
 cf1	
 *mes,	
 then	
 the	

second	
 most	
 frequent	
 term	
 (of)	
 has	
 half	
 as	
 many	
 occurrences	
 	
 	
 	
 	
 	
 	

§  .	
 .	
 .	
 and	
 the	
 third	
 most	
 frequent	
 term	
 (and)	
 has	
 a	
 third	
 as	

many	
 occurrences	
 	

§  Equivalent:	
 cfi	
 =	
 cik	
 and	
 log	
 cfi	
 =	
 log	
 c	
 +k	
 log	
 i	
 (for	
 k	
 =	
 −1)	

§  Example	
 of	
 a	
 power	
 law	

19	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

20	

Zipf’s	
 law	
 for	
 Reuters	

•  Fit	
 is	
 not	
 great.	
 	

•  What	
 is	
 important	
 is	
 the	
 key	
 insight:	
 Few	
 frequent	
 terms,	
 many	

rare	
 terms.	

20	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Outline	

❶  	
 Recap	
 	

❷  	
 Compression	

❸  	
 Term	
 sta*s*cs	

❹  Dic*onary	
 compression	

❺  Pos*ngs	
 compression	

	

21	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

22	

Dic(onary	
 compression	

§  The	
 dic*onary	
 is	
 small	
 compared	
 to	
 the	
 pos*ngs	
 file.	

§  But	
 we	
 want	
 to	
 keep	
 it	
 in	
 memory.	

§  Also:	
 compe**on	
 with	
 other	
 applica*ons,	
 cell	
 phones,	

onboard	
 computers,	
 fast	
 startup	
 *me	

§  So	
 compressing	
 the	
 dic*onary	
 is	
 important.	

22	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

23	

Recall:	
 Dic(onary	
 as	
 array	
 of	
 fixed-­‐width	
 entries	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	

Space	
 needed:	
 20	
 bytes	
 	
 	
 	
 	
 	
 4	
 bytes	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 4	
 bytes	

for	
 Reuters:	
 (20+4+4)*400,000	
 =	
 11.2	
 MB	

23	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

24	

Fixed-­‐width	
 entries	
 are	
 bad.	

§  Most	
 of	
 the	
 bytes	
 in	
 the	
 term	
 column	
 are	
 wasted.	

§ We	
 allot	
 20	
 bytes	
 for	
 terms	
 of	
 length	
 1.	

§  We	
 can’t	
 handle	
 HYDROCHLOROFLUOROCARBONS	
 and	

SUPERCALIFRAGILISTICEXPIALIDOCIOUS	

§  Average	
 length	
 of	
 a	
 term	
 in	
 English:	
 8	
 characters	

§  How	
 can	
 we	
 use	
 on	
 average	
 8	
 characters	
 per	
 term?	

24	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

25	

Dic(onary	
 as	
 a	
 string	

25	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

26	

Space	
 for	
 dic(onary	
 as	
 a	
 string	

§  4	
 bytes	
 per	
 term	
 for	
 frequency	

§  4	
 bytes	
 per	
 term	
 for	
 pointer	
 to	
 pos*ngs	
 list	

§  8	
 bytes	
 (on	
 average)	
 for	
 term	
 in	
 string	

§  3	
 bytes	
 per	
 pointer	
 into	
 string	
 	

§  need	
 log2	
 8	
 ·∙	
 400000	
 <	
 24	
 bits	
 (
 3	
 bytes	
 pointer)	
 to	
 resolve	
 8	

·∙	
 400,000	
 posi*ons	

§  Space:	
 400,000	
 ×	
 (4	
 +4	
 +3	
 +	
 8)	
 =	
 7.6MB	
 (compared	
 to	
 11.2	

MB	
 for	
 fixed-­‐width	
 array)	

26	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

27	

Dic(onary	
 as	
 a	
 string	
 with	
 blocking	

27	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

28	

Space	
 for	
 dic(onary	
 as	
 a	
 string	
 with	
 blocking	

§  Example	
 block	
 size	
 k	
 =	
 4	

§  Where	
 we	
 used	
 4	
 ×	
 3	
 bytes	
 for	
 term	
 pointers	
 without	

blocking	
 	
 .	
 .	
 .	

§  .	
 .	
 .we	
 now	
 use	
 3	
 bytes	
 for	
 one	
 pointer	
 plus	
 4	
 bytes	
 for	

indica*ng	
 the	
 length	
 of	
 each	
 term.	

§  We	
 save	
 12	
 −	
 (3	
 +	
 4)	
 =	
 5	
 bytes	
 per	
 block.	

§  Total	
 savings:	
 400,000/4	
 ∗	
 5	
 =	
 0.5	
 MB	

§  Reduces	
 the	
 size	
 of	
 the	
 dic*onary	
 from	
 7.6	
 MB	
 to	
 7.1	
 MB.	

28	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

29	

Lookup	
 of	
 a	
 term	
 without	
 blocking	

29	

•  Searching the uncompressed dictionary
takes on average (0 + 1 + 2 + 3 + 2 + 1 +
2 + 2)/8 ≈ 1.6 steps, assuming each
term is equally likely to come up in a
query.

•  For example, finding the two terms, aid
and box, takes three and two steps,
respectively.

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

30	

Lookup	
 of	
 a	
 term	
 with	
 blocking:	
 (slightly)	

slower	

30	

•  With blocks of size k = 4, we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8
= 2 steps on average, ≈ 25% more. For example, finding den takes
one binary search step and two steps through the block.

•  By increasing k, we can get the size of the compressed dictionary
arbitrarily close to the minimum of 400,000 × (4 + 4 + 1 + 8) = 6.8
MB, but term lookup becomes prohibitively slow for large values of
k.

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

31	

Front	
 coding	
 (Further	
 compression)	

	
 	
 	
 One	
 block	
 in	
 blocked	
 compression	
 (k	
 =	
 4)	
 .	
 .	
 .	

	
 8	
 a	
 u	
 t	
 o	
 m	
 a	
 t	
 a	
 8	
 a	
 u	
 t	
 o	
 m	
 a	
 t	
 e	
 9	
 a	
 u	
 t	
 o	
 m	
 a	
 t	
 i	
 c	
 10	
 a	
 u	
 t	
 o	
 m	
 a	
 t	
 i	
 o	
 n	

	
 	
 	
 	
 	
 	
 	
 	
 	
 ⇓	

	
 	
 	
 	
 	
 	
 .	
 .	
 .	
 further	
 compressed	
 with	
 front	
 coding.	

	
 	
 	
 	
 8	
 a	
 u	
 t	
 o	
 m	
 a	
 t	
 ∗	
 a	
 1	
 ⋄	
 e	
 2	
 ⋄	
 i	
 c	
 3	
 ⋄	
 i	
 o	
 n	

31	

•  In the case of Reuters, front coding saves another 1.2 MB.

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

32	

Dic(onary	
 compression	
 for	
 Reuters:	
 Summary	

32	

data	
 structure	
 size	
 in	
 MB	

dic*onary,	
 fixed-­‐width	

dic*onary,	
 term	
 pointers	
 into	
 string	

∼,	
 with	
 blocking,	
 k	
 =	
 4	

∼,	
 with	
 blocking	
 &	
 front	
 coding	

11.2	

7.6	

7.1	

5.9	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Exercise	
 5.2	

Tuesday	
 28	
 May	
 19	
 33	

•  Es*mate	
 the	
 space	
 usage	
 of	
 the	
 Reuters-­‐RCV1	
 dic*onary	
 with	
 blocks	
 of	
 size	
 k	
 =	
 8	

and	
 k	
 =	
 16	
 in	
 blocked	
 dic*onary	
 storage.	
 	

•  Solu*on:	

–  For	
 K=8	
 	

•  We	
 will	
 save	
 :(8-­‐1)	
 *	
 3	
 =	
 21	
 bytes	
 for	
 term	
 pointer	

•  Need	
 addi*onal	
 k	
 =8	
 for	
 term	
 length	
 so	
 space	
 reduced	
 by	
 13	
 bytes	
 per	
 8	

term	
 block	

•  Total	
 space	
 reduced	
 by=	
 400000	
 *	
 13	
 /8	
 =	
 0.65	
 MB	

•  Total	
 space	
 is:	
 7.6	
 –	
 0.65	
 =	
 6.95	
 MB	

–  For	
 K=16	

•  We	
 will	
 save	
 :(16-­‐1)	
 *	
 3	
 =	
 45	
 bytes	
 for	
 term	
 pointer	

•  Need	
 addi*onal	
 k=16	
 for	
 term	
 length	
 so	
 space	
 reduced	
 by	
 29	
 bytes	
 per	
 16	

term	
 block	
 	

•  Total	
 space	
 reduced	
 by=	
 400000	
 *	
 29	
 /16	
 =	
 0.725	
 MB	
 	

•  Total	
 space	
 is:	
 7.6	
 –	
 0.725	
 =	
 6.875	
 MB	

	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Exercise	
 5.3	
 (Read	
 it	
 Yourself)	

Tuesday	
 28	
 May	
 19	
 34	

•  Es*mate	
 the	
 *me	
 needed	
 for	
 term	
 lookup	
 in	
 the	
 compressed	
 dic*onary	
 of	
 Reuters	

RCV1	
 with	
 block	
 sizes	
 of	
 k=4	
 (Figure5.6,b),	
 k=8,	
 and	
 k=16.	
 What	
 is	
 the	
 slowdown	

compared	
 with	
 k	
 =	
 1	
 (Figure	
 5.6,	
 a)?	
 	

•  Solu*on:	

–  We	
 first	
 search	
 the	
 leaf	
 in	
 the	
 binary	
 tree,	
 then	
 search	
 the	
 par*cular	
 term	
 in	

the	
 block.	

Average	
 steps	
 needed	
 to	
 look	
 up	
 term	
 is	

log(N/k)	
 -­‐1+	
 k/2,	
 For	
 Reuters-­‐RCV1,	
 N=400000	
 	

–  Compare	
 it	
 with	
 the	
 related	
 figure	
 or	
 text	
 in	
 Sec*on	
 5.2.2	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Outline	

❶  	
 Recap	
 	

❷  	
 Compression	

❸  	
 Term	
 sta*s*cs	

❹  Dic*onary	
 compression	

❺  Pos*ngs	
 compression	

	

35	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

36	

Pos(ngs	
 compression	

§  The	
 pos*ngs	
 file	
 is	
 much	
 larger	
 than	
 the	
 dic*onary,	
 factor	

of	
 at	
 least	
 10.	

§  Key	
 desideratum	
 (needed):	
 store	
 each	
 pos*ng	
 compactly	

§  A	
 pos*ng	
 for	
 our	
 purposes	
 is	
 a	
 docID.	

§  For	
 Reuters	
 (800,000	
 documents),	
 we	
 would	
 use	
 32	
 bits	

per	
 docID	
 when	
 using	
 4-­‐byte	
 integers.	

§  Alterna*vely,	
 we	
 can	
 use	
 log2	
 800,000	
 ≈	
 19.6	
 <	
 20	
 bits	
 per	

docID.	

§  Our	
 goal:	
 use	
 a	
 lot	
 less	
 than	
 20	
 bits	
 per	
 docID.	

36	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

37	

Key	
 idea:	
 Store	
 gaps	
 instead	
 of	
 docIDs	

§  Each	
 pos*ngs	
 list	
 is	
 ordered	
 in	
 increasing	
 order	
 of	
 docID.	

§  Example	
 pos*ngs	
 list:	
 COMPUTER:	
 283154,	
 283159,	
 283202,	
 .	
 .	
 .	

§  It	
 suffices	
 to	
 store	
 gaps:	
 283159-­‐283154=5,	
 283202-­‐283154=43	

§  Example	
 pos*ngs	
 list	
 using	
 gaps	
 :	
 COMPUTER:	
 283154,	
 5,	
 43,	
 .	
 .	
 .	

§  Gaps	
 for	
 frequent	
 terms	
 are	
 small.	

§  Thus:	
 We	
 can	
 encode	
 small	
 gaps	
 with	
 fewer	
 than	
 20	
 bits.	

37	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

38	

Gap	
 encoding	

38	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

39	

Variable	
 length	
 encoding	

§  Aim:	

§  For	
 ARACHNOCENTRIC	
 and	
 other	
 rare	
 terms,	
 we	
 will	
 use	

about	
 20	
 bits	
 per	
 gap	
 (=	
 pos*ng).	

§  For	
 THE	
 and	
 other	
 very	
 frequent	
 terms,	
 we	
 will	
 use	
 only	
 a	

few	
 bits	
 per	
 gap	
 (=	
 pos*ng).	

§  In	
 order	
 to	
 implement	
 this,	
 we	
 need	
 to	
 devise	
 some	
 form	

of	
 variable	
 length	
 encoding.	

§  Variable	
 length	
 encoding	
 uses	
 few	
 bits	
 for	
 small	
 gaps	
 and	

many	
 bits	
 for	
 large	
 gaps.	

39	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

40	

Variable	
 byte	
 (VB)	
 code	

§  Used	
 by	
 many	
 commercial/research	
 systems	

§  Good	
 low-­‐tech	
 blend	
 of	
 variable-­‐length	
 encoding	
 and	

sensi*vity	
 to	
 alignment	
 matches	
 (bit-­‐level	
 codes,	
 see	
 later).	

§  Dedicate	
 1	
 bit	
 (high	
 bit)	
 to	
 be	
 a	
 con*nua*on	
 bit	
 c.	

§  If	
 the	
 gap	
 G	
 fits	
 within	
 7	
 bits,	
 binary-­‐encode	
 it	
 in	
 the	
 7	

available	
 bits	
 and	
 set	
 c	
 =	
 1.	

§  Else:	
 encode	
 lower-­‐order	
 7	
 bits	
 and	
 then	
 use	
 one	
 or	
 more	

addi*onal	
 bytes	
 to	
 encode	
 the	
 higher	
 order	
 bits	
 using	
 the	

same	
 algorithm.	

§  At	
 the	
 end	
 set	
 the	
 con*nua*on	
 bit	
 of	
 the	
 last	
 byte	
 to	
 1	
 	
 	
 	
 	
 	
 	
 	
 	

(c	
 =	
 1)	
 and	
 of	
 the	
 other	
 bytes	
 to	
 0	
 (c	
 =	
 0).	

40	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

41	

VB	
 code	
 examples	

41	

docIDs	

gaps	

VB	
 code	

824	

	

00000110	
 	
 10111000	

829	

5	

10000101	

215406	

214577	

00001101	
 00001100	
 10110001	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

42	

VB	
 code	
 encoding	
 algorithm	

42	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

43	

VB	
 code	
 decoding	
 algorithm	

43	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

44	

Other	
 variable	
 codes	

§  Instead	
 of	
 bytes,	
 we	
 can	
 also	
 use	
 a	
 different	
 “unit	
 of	

alignment”:	
 32	
 bits	
 (words),	
 16	
 bits,	
 4	
 bits	
 (nibbles)	
 etc	

§  Variable	
 byte	
 alignment	
 wastes	
 space	
 if	
 you	
 have	
 many	

small	
 gaps	
 –	
 nibbles	
 do	
 be�er	
 on	
 those.	

§  Recent	
 work	
 on	
 word-­‐aligned	
 codes	
 that	
 efficiently	
 “pack”	

a	
 variable	
 number	
 of	
 gaps	
 into	
 one	
 word	
 –	
 see	
 resources	

at	
 the	
 end	

44	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

45	

Gamma	
 codes	
 for	
 gap	
 encoding	

§  You	
 can	
 get	
 even	
 more	
 compression	
 with	
 another	
 type	
 of	

variable	
 length	
 encoding:	
 bitlevel	
 code.	

§  Gamma	
 code	
 is	
 the	
 best	
 known	
 of	
 these.	

§  First,	
 we	
 need	
 unary	
 code	
 to	
 be	
 able	
 to	
 introduce	
 gamma	

code.	

§  Unary	
 code	

§  Represent	
 n	
 as	
 n	
 1s	
 with	
 a	
 final	
 0.	

§  Unary	
 code	
 for	
 3	
 is	
 1110	

§  Unary	
 code	
 for	
 40	
 is	

110	

§  Unary	
 code	
 for	
 70	
 is:	
 	

110	

45	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

46	

Gamma	
 code	

§  Represent	
 a	
 gap	
 G	
 as	
 a	
 pair	
 of	
 length	
 and	
 offset.	

§  Offset	
 is	
 the	
 gap	
 in	
 binary,	
 with	
 the	
 leading	
 bit	
 chopped	
 off.	

§  For	
 example	
 13	
 →	
 1101	
 →	
 101	
 =	
 offset	

§  Length	
 is	
 the	
 length	
 of	
 offset.	

§  For	
 13	
 (offset	
 101),	
 this	
 is	
 3.	

§  Encode	
 length	
 in	
 unary	
 code:	
 1110.	

§  Gamma	
 code	
 of	
 13	
 is	
 the	
 concatena*on	
 of	
 length	
 and	

offset:	
 1110101.	

46	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

47	

Gamma	
 code	
 examples	

47	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

48	

Length	
 of	
 gamma	
 code	

§  The	
 length	
 of	
 offset	
 is	
 ⌊log2	
 G⌋	
 bits.	

§  The	
 length	
 of	
 length	
 is	
 ⌊log2	
 G⌋	
 +	
 1	
 bits,	

§  So	
 the	
 length	
 of	
 the	
 en*re	
 code	
 is	
 2	
 x	
 ⌊log2	
 G⌋	
 +	
 1	
 bits.	

§  ϒ	
 codes	
 are	
 always	
 of	
 odd	
 length.	

§  Gamma	
 codes	
 are	
 within	
 a	
 factor	
 of	
 2	
 of	
 the	
 op*mal	

encoding	
 length	
 log2	
 G.	

48	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

49	

Gamma	
 code:	
 Proper(es	

§  Gamma	
 code	
 is	
 prefix-­‐free:	
 a	
 valid	
 code	
 word	
 is	
 not	
 a	
 prefix	

of	
 any	
 other	
 valid	
 code.	

§  Encoding	
 is	
 op*mal	
 within	
 a	
 factor	
 of	
 3	
 (and	
 within	
 a	
 factor	

of	
 2	
 making	
 addi*onal	
 assump*ons).	

§  This	
 result	
 is	
 independent	
 of	
 the	
 distribu*on	
 of	
 gaps!	

§  We	
 can	
 use	
 gamma	
 codes	
 for	
 any	
 distribu*on.	
 Gamma	

code	
 is	
 universal.	

§  Gamma	
 code	
 is	
 parameter-­‐free.	

49	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

50	

Gamma	
 codes:	
 Alignment	

§  Machines	
 have	
 word	
 boundaries	
 –	
 8,	
 16,	
 32	
 bits	

§  Compressing	
 and	
 manipula*ng	
 granularity	
 of	
 bits	
 can	
 be	

slow.	

§  Variable	
 byte	
 encoding	
 is	
 aligned	
 and	
 thus	
 poten*ally	
 more	

efficient.	

§  Regardless	
 of	
 efficiency,	
 variable	
 byte	
 is	
 conceptually	

simpler	
 at	
 li�le	
 addi*onal	
 space	
 cost.	

50	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

51	

Compression	
 of	
 Reuters	

51	

data	
 structure	
 size	
 in	
 MB	

dic*onary,	
 fixed-­‐width	

dic*onary,	
 term	
 pointers	
 into	
 string	

∼,	
 with	
 blocking,	
 k	
 =	
 4	

∼,	
 with	
 blocking	
 &	
 front	
 coding	

collec*on	
 (text,	
 xml	
 markup	
 etc)	

collec*on	
 (text)	

T/D	
 incidence	
 matrix	

pos*ngs,	
 uncompressed	
 (32-­‐bit	
 words)	

pos*ngs,	
 uncompressed	
 (20	
 bits)	

pos*ngs,	
 variable	
 byte	
 encoded	

pos*ngs,	
 	
 encoded	

11.2	

7.6	

7.1	

5.9	

3600.0	

960.0	

40,000.0	

400.0	

250.0	

116.0	

101.0	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

52	

Term-­‐document	
 incidence	
 matrix	

Entry	
 is	
 1	
 if	
 term	
 occurs.	
 Example:	
 CALPURNIA	
 occurs	
 in	
 Julius	

Caesar.	
 Entry	
 is	
 0	
 if	
 term	
 doesn’t	
 occur.	
 Example:	
 CALPURNIA	

doesn’t	
 occur	
 in	
 The	
 tempest.	

52	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

53	

Summary	

§  We	
 can	
 now	
 create	
 an	
 index	
 for	
 highly	
 efficient	
 Boolean	

retrieval	
 that	
 is	
 very	
 space	
 efficient.	

§  Only	
 10-­‐15%	
 of	
 the	
 total	
 size	
 of	
 the	
 text	
 in	
 the	
 collec*on.	

§  However,	
 we’ve	
 ignored	
 posi*onal	
 and	
 frequency	

informa*on.	

§  For	
 this	
 reason,	
 space	
 savings	
 are	
 less	
 in	
 reality.	

53	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

54	

Ar(cles	
 to	
 be	
 read	

•  Anh, Vo Ngoc, and Alistair Moffat. 2006a. Improved word-

aligned binary compres- sion for text indexing. IEEE
Transactions on Knowledge and Data Engineering 18(6): 857–
861.

•  Scholer, Falk, Hugh E. Williams, John Yiannis, and Justin Zobel.
2002. Compression of inverted indexes for fast query
evaluation. In Proc. SIGIR, pp. 222–229. ACM

•  Williams, Hugh E., and Justin Zobel. 2005. Searchable words on
the web. International Journal on Digital Libraries 5(2):99–105.

•  Büttcher, Stefan, and Charles L. A. Clarke. 2006. A document-
centric approach to static index pruning in text retrieval
systems. In Proc. CIKM, pp. 182–189.

•  Brisaboa, Nieves R., Antonio Fariña, Gonzalo Navarro, and José
R. Parama�. 2007. Lightweight natural language text
compression. IR 10(1):1–33.

54	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

55	

Homework	
 #5	

•  (a):	
 Exercise 5.5 [⋆] Compute variable byte and γ codes for the
postings list ⟨777, 17743, 294068, 31251336⟩. Use gaps
instead of docIDs where possible. Write binary codes in 8-bit
blocks.

•  (b): Exercise 5.6 Consider the postings list ⟨4, 10, 11, 12, 15,
62, 63, 265, 268, 270, 400⟩ with a correspond- ing list of gaps
⟨4, 6, 1, 1, 3, 47, 1, 202, 3, 2, 130⟩. Assume that the length of
the postings list is stored separately, so the system knows
when a postings list is complete. Us- ing variable byte
encoding: (i) What is the largest gap you can encode in 1 byte?
(ii) What is the largest gap you can encode in 2 bytes? (iii) How
many bytes will the above postings list require under this
encoding? (Count only space for encoding the sequence of
numbers.)

55	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

56	

Homework	
 #5	

•  (c):	
 Exercise 5.8 [⋆] From the following sequence of γ-coded
gaps, reconstruct first the gap sequence and then the postings
sequence: 1110001110101011111101101111011. 	

•  (d); Exercise 5.12 To be able to hold as many postings as
possible in main memory, it is a good idea to compress
intermediate index files during index construction. (i) This
makes merging runs in blocked sort-based indexing more
complicated. As an example, work out the γ-encoded merged
sequence of the gaps in Table 5.7. (ii) Index construction is
more space efficient when using compression. Would you also
expect it to be faster? 	

•  (e): Exercise 5.13 (i) Show that the size of the vocabulary is
finite according to Zipf’s law and infinite according to Heaps’
law. (ii) Can we derive Heaps’ law from Zipf’s law?

56	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

57	

Homework	
 #5	

•  (f):	
 Exercise 5.17 Consider a term whose postings list has size
n, say, n = 10,000. Compare the size of the γ-compressed
gap-encoded postings list if the distribution of the term is
uniform (i.e., all gaps have the same size) versus its size when
the distribution is not uniform. Which compressed postings list
is smaller?

57	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

58	

Homework	
 #5	
 (Programming)	

•  (g):	
 Visit	
 the	
 following	
 link:	
 Download	
 and	
 configure	
 the	
 variable	

byte	
 code	
 program.	
 Take	
 and	
 test	
 data	
 and	
 evaluate	
 the	
 results.	
 	

	

•  https://github.com/jermp/opt_vbyte

•  (h): Visit the following link: Download and configure the Delta
code program. Take and test data and evaluate the results.

•  http://bitmagic.io/dGap-gamma.html

58	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

59	

Reference	

•  (c):	
 Exercise 5.8 [⋆] From the following sequence of γ-coded
gaps, reconstruct first the gap sequence and then the postings
sequence: 1110001110101011111101101111011. 	

•  (d); Exercise 5.12 To be able to hold as many postings as
possible in main memory, it is a good idea to compress
intermediate index files during index construction. (i) This
makes merging runs in blocked sort-based indexing more
complicated. As an example, work out the γ-encoded merged
sequence of the gaps in Table 5.7. (ii) Index construction is
more space efficient when using compression. Would you also
expect it to be faster? 	

•  (e): Exercise 5.13 (i) Show that the size of the vocabulary is
finite according to Zipf’s law and infinite according to Heaps’
law. (ii) Can we derive Heaps’ law from Zipf’s law?

59	

