Information Retrieval

Lecture 5: Index Compression

Introduction to Information Retrieval

Overview

@ Recap

@® Compression
€© Term statistics

@O Dictionary compression

© Postings compression

Introduction to Information Retrieval

Outline

@ Recap

Introduction to Information Retrieval

Blocked Sort-Based Indexing

postings
to be merged brutus d2
Block 1 Block 2 DRutls @3
brutus d3 brutus d2 caesar dl
caesar d4 merged
caesar d4 caesar dl — ulivs dl .
noble d3 julius ~ d1 kaed T postings
with d4 killed d2 noble d3
with d4

/

disk

Introduction to Information Retrieval

MapReduce for index construction

splits assign (master) assign ¢
| — el postings

‘ S N I
.___»A‘.‘-'__‘__

(_parser a-fig-p|q-z| ¥ inverter) a-f

e — K

) . f ,"",,

=
1 nverter J—* g-p

33:_'_':_#_pars er%” a-f|g-p q-z||

1
I

Q00
000
Q00

T C
. Inverte r —* q-z

l | Cparser) {af[g-pqz

segment reduce
map files

phase phase

Introduction to Information Retrieval

Dynamic indexing: Simplest approach

= Maintain big main index on disk
= New docs go into small auxiliary index in memory.
= Search across both, merge results

= Periodically, merge auxiliary index into big index

Introduction to Information Retrieval

Take-away today

For each term t, we store a list of all documents that contain t.

[Brutus | — [1] 2] 4] 11[31[45[173 [174 |

[Caesar | — [1] 2] 4] 5] 6[16] 57[132]...]
[Catronnia | — [2]3L]54 101

S—— ~~
dictionary postings file

= Motivation for compression in information retrieval systems

" How can we compress the dictionary component of the
inverted index?

= How can we compress the postings component of the
inverted index?

= Term statistics: how are terms distributed in document
collections?

Introduction to Information Retrieval

Outline

@® Compression

Introduction to Information Retrieval

Why compression? (in general)

" Use less disk space (saves money)
= Keep more stuff in memory (increases speed)

" |ncrease speed of transferring data from disk to memory
(again, increases speed)

= [read compressed data and decompress in memory]
is faster than [read uncompressed data]

" Premise: Decompression algorithms are fast.

= This is true for the decompression algorithms we will use.

Introduction to Information Retrieval

Why compression in information retrieval?

= First, we will consider space for dictionary

= Main motivation for dictionary compression: make it small
enough to keep in main memory

= Then for the postings file

= Motivation: reduce disk space needed, decrease time needed
to read from disk

= Note: Large search engines keep significant part of postings in
memory

= We will devise various compression schemes for dictionary
and postings.

10

Introduction to Information Retrieval

Lossy vs. lossless compression

= Lossy compression: Discard some information

= Several of the preprocessing steps we frequently use can be
viewed as lossy compression:
= downcasing, stop words, porter, number elimination

= |Lossless compression: All information is preserved.

= What we mostly do in index compression

11

Introduction to Information Retrieval

Outline

€© Term statistics

12

Introduction to Information Retrieval

Model collection: The Reuters collection

symbol | statistics value

N documents 800,000

L avg. # tokens per document 200

M word types 400,000
avg. # bytes per token (incl. spaces/punct.) 6
avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term (= word type) 7.5

T Tokens 100,000,000

13

Introduction to Information Retrieval

Effect of preprocessing for Reuters

non-positional positional postings
word types (tenm) postings (word tokens)
size of dictionary non-positional index positional index
size A cml.. size A cml.. size A cml..
unfiltered 484,494 109,971,179 197,879,290

no numbers | 473,723 -2% -2% | 100,680,242 -8% -8% | 179,158,204 -9% -9%
case folding | 391,523 -17% -19% 06,969,056 -3% -12% | 179,158,204 0% -9%
30 stop w's 301,493 -0% -19% 83,390,443 -14% -24% | 121,857,825 -31% -38%
150 stop w's | 391,373 -0% -19% 67,001,847 -30% -39% 94 516,599 -47% -52%
stemming 322,383 -17% -33% | 63,812,300 -4% -42% | 94,516,599 -0% -52%

14

Introduction to Information Retrieval

How big is the term vocabulary?

That is, how many distinct words are there?
= Can we assume there is an upper bound?
= Not really: At least 70%° = 103 different words of length 20.
The vocabulary will keep growing with collection size.
" Heaps’ law: M = kT?
= M is the size of the vocabulary, T is the number of tokens in the
collection.
= Typical values for the parameters k and b are: 30 < k<100 and
b =0.5.
Heaps’ law is linear in log-log space.
= |tis the simplest possible relationship between collection size
and vocabulary size in log-log space.
= Empirical law

15

Introduction to Information Retrieval

Heaps’ law for Reuters

© - | Vocabulary size M as a
function of collection size
T (number of tokens) for
Reuters-RCV1. For these
data, the dashed line
log,,M =

0.49 * log,, T + 1.64 is the
best least squares fit.
Thus, M = 101.647049

° 1 T | _ | and k = 101%4 = 44 and

’ :) ’ ’ b = 0.49.

log10 M
3

16

Introduction to Information Retrieval

Empirical fit for Reuters

= Good, as we just saw in the graph.

= Example: for the first 1,000,020 tokens Heaps’ law predicts
38,323 terms:

44 x 1,000,020°4° = 38,323

" The actual number is 38,365 terms, very close to the
prediction.

= Empirical observation: fit is good in general.(through
calculation)

17

Introduction to Information Retrieval

Zipf's law

= Now we have characterized (describe) the growth of the
vocabulary in collections.

= We also want to know how many frequent vs. infrequent
terms we should expect in a collection.

" In natural language, there are a few very frequent terms and
very many very rare terms.

= Zipf’s law: The it" most frequent term has frequency cf.

proportional to 1/i .

1

i

= cf,is collection frequency: the number of occurrences of the
term t.in the collection.

m Cf,'O(

18

Introduction to Information Retrieval

Zipf's law

= So if the most frequent term (the) occurs cf, times, then the
second most frequent term (of) has half as many occurrences

= cof; % the third most frequent term (and) has a third as
many occurrences

= Equivalent: cf = ci* and log cf. = log c +k log i (for k = -1)

= Example of a power law
cfr = %cfl .

Cf3 = %‘Cfl

19

Introduction to Information Retrieval

Zipf's law for Reuters

* Fitis not great.
* What is important is the key insight: Few frequent terms, many
rare terms.

20

Introduction to Information Retrieval

Outline

@O Dictionary compression

21

Introduction to Information Retrieval

Dictionary compression

= The dictionary is small compared to the postings file.
= But we want to keep it in memory.

= Also: competition with other applications, cell phones,
onboard computers, fast startup time

= So compressing the dictionary is important.

22

Introduction to Information Retrieval

Recall: Dictionary as array of fixed-width entries

term document pointer to
frequency postings list
a 656,265 —
aachen 65 —
zulu 221 —
Space needed: 20 bytes 4 bytes 4 bytes

for Reuters: (20+4+4)*400,000 = 11.2 MB

23

Introduction to Information Retrieval

Fixed-width entries are bad.

= Most of the bytes in the term column are wasted.
= We allot 20 bytes for terms of length 1.

= We can’t handle HYDROCHLOROFLUOROCARBONS and
SUPERCALIFRAGILISTICEXPIALIDOCIOUS

= Average length of a term in English: 8 characters

= How can we use on average 8 characters per term?

24

Introduction to Information Retrieval

Dictionary as a string

...systilesyzygeticsyzygialsyzygyszaibelyiteszecinszono. ..

freq. postings ptr. term ptr.

9
92
5
71
12

Ll

4 bytes 4 bytes 3 bytes

25

Introduction to Information Retrieval

Space for dictionary as a string

= 4 bytes per term for frequency

= 4 bytes per term for pointer to postings list
= 8 bytes (on average) for term in string

= 3 bytes per pointer into string

" need log28 - 400000 < 24 bits (3 bytes pointer) to resolve 8
- 400,000 positions

= Space: 400,000 x (4 +4 +3 + 8) = 7.6MB (compared to 11.2
MB for fixed-width array)

26

Introduction to Information Retrieval

Dictionary as a string with blocking

...7systile9syzygetic8syzygiale6syzygyllszaibelyite6szecin...

freq. postings ptr. term ptr.

9
92
5
71
12

Ll

27

Introduction to Information Retrieval

Space for dictionary as a string with blocking

= Example block size k =4

* Where we used 4 x 3 bytes for term pointers without
blocking ...

= . ..we now use 3 bytes for one pointer plus 4 bytes for
indicating the length of each term.

= Wesave 12 - (3 + 4) =5 bytes per block.
* Total savings: 400,000/4 *5=0.5 MB
= Reduces the size of the dictionary from 7.6 MB to 7.1 MB.

28

Introduction to Information Retrieval

Lookup of a term without blocking

Searching the uncompressed dictionary
takesonaverage O+ 1 +2+3+2+ 1+
2 +2)/8 = 1.6 steps, assuming each
term is equally likely to come up in a
query.

« For example, finding the two terms, aid
and box, takes three and two steps,
respectively.

29

Introduction to Information Retrieval

Lookup of a term with blocking: (slightly)
slower

——)
= PI'T > WIN
_/

« With blocks of size k=4, weneed O+1+2+3+4+1+2+3)/8
= 2 steps on average, =~ 25% more. For example, finding den takes
one binary search step and two steps through the block.

« By increasing k, we can get the size of the compressed dictionary
arbitrarily close to the minimum of 400,000 x (4 +4+ 1 + 8 =6.8

MB, but term lookup becomes prohibitively slow for large values of
k.

30

Introduction to Information Retrieval

Front coding (Further compression)

One block in blocked compression (k=4) . ..
8automata8automate9automaticl0automation

U

... further compressed with front coding.
automat*aloe2¢ic3%ion

« In the case of Reuters, front coding saves another 1.2 MB.

31

Introduction to Information Retrieval

Dictionary compression for Reuters: Summary

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k =4 7.1
~, with blocking & front coding 5.9

32

Introduction to Information Retrieval

Exercise 5.2

« Estimate the space usage of the Reuters-RCV1 dictionary with blocks of size k=8
and k = 16 in blocked dictionary storage.

e Solution:
— ForK=8
 We will save :(8-1) * 3 = 21 bytes for term pointer

* Need additional k =8 for term length so space reduced by 13 bytes per 8
term block

» Total space reduced by= 400000 * 13 /8 = 0.65 MB
e Total spaceis: 7.6 —0.65 = 6.95 MB

— ForK=16
 We will save :(16-1) * 3 = 45 bytes for term pointer

* Need additional k=16 for term length so space reduced by 29 bytes per 16
term block

* Total space reduced by= 400000 * 29 /16 = 0.725 MB
* Total spaceis: 7.6 —0.725 = 6.875 MB

Tuesday 28 May 33

Introduction to Information Retrieval

Exercise 5.3 (Read it Yourself)

* Estimate the time needed for term lookup in the compressed dictionary of Reuters
RCV1 with block sizes of k=4 (Figure5.6,b), k=8, and k=16. What is the slowdown
compared with k=1 (Figure 5.6, a)?

 Solution:

— We first search the leaf in the binary tree, then search the particular termin
the block.
Average steps needed to look up term is
log(N/k) -1+ k/2, For Reuters-RCV1, N=400000

K Average steps
4 17.6
8 18.6
16 21.6

— Compare it with the related figure or text in Section 5.2.2

Tuesday 28 May 34

Introduction to Information Retrieval

Outline

© Postings compression

35

Introduction to Information Retrieval

Postings compression

* The postings file is much larger than the dictionary, factor
of at least 10.

* Key desideratum (needed): store each posting compactly
= A posting for our purposes is a doclD.

= For Reuters (800,000 documents), we would use 32 bits
per docID when using 4-byte integers.

= Alternatively, we can use log, 800,000 = 19.6 < 20 bits per
doclID.

= Qur goal: use a lot less than 20 bits per doclID.

36

Introduction to Information Retrieval

Key idea: Store gaps instead of doclIDs

Each postings list is ordered in increasing order of doclD.

" Example postings list: COMPUTER: 283154, 283159, 283202, . ..
" |t suffices to store gaps: 283159-283154=5, 283202-283154=43
" Example postings list using gaps : COMPUTER: 283154, 5, 43, . ..

= Gaps for frequent terms are small.

Thus: We can encode small gaps with fewer than 20 bits.

37

Introduction to Information Retrieval

Gap encoding

encoding postings list

THE doclDs . 283042 283043 283044 283045
gaps 1 1 1
COMPUTER doclDs . 283047 283154 283159 283202
gaps 107 5 43
ARACHNOCENTRIC doclDs 252000 500100
gaps 252000 248100

38

Introduction to Information Retrieval

Variable length encoding

= Aim:
= For ARACHNOCENTRIC and other rare terms, we will use
about 20 bits per gap (= posting).
" For THE and other very frequent terms, we will use only a
few bits per gap (= posting).
= |n order to implement this, we need to devise some form
of variable length encoding.
= Variable length encoding uses few bits for small gaps and
many bits for large gaps.

39

Introduction to Information Retrieval

Variable byte (VB) code

= Used by many commercial/research systems

= Good low-tech blend of variable-length encoding and
sensitivity to alignment matches (bit-level codes, see later).

= Dedicate 1 bit (high bit) to be a continuation bit c.

= |f the gap G fits within 7 bits, binary-encode it in the 7
available bits and set c = 1.

= El|se: encode lower-order 7 bits and then use one or more
additional bytes to encode the higher order bits using the
same algorithm.

= At the end set the continuation bit of the last byte to 1
(c = 1) and of the other bytes to 0 (c = 0).

40

Introduction to Information Retrieval

VB code examples

doclDs 824 829 215406
gaps 5 214577
VB code 00000110 10111000 10000101 00001101 00001100 10110001

41

Introduction to Information Retrieval

VB code encoding algorithm

VBENCODENUMBER(n) VBENCODE(numbers)

1 bytes — () 1 bytestream — ()

2 while true 2 for each n < numbers

3 do PrREPEND(bytes,n mod 128) 3 do bytes — VBENCODENUMBER(n)

4 if n < 128 4 bytestream «— EXTEND(bytestream, bytes)
5 then BREAK 5 return bytestream

6 n < n div 128

7 bytes|LENGTH(bytes)] += 128

8 return bytes

42

Introduction to Information Retrieval

VB code decoding algorithm

VBDECODE(bytestream)
numbers «— ()
n«—0
for i — 1 to LENGTH(bytestream)
do if bytestream|[i] < 128
then n < 128 x n + bytestream|i]
else n«— 128 x n+ (bytestream|i] — 128)
APPEND(numbers, n)
n—20
return numbers

O 00 ~NO OB WN =

43

Introduction to Information Retrieval

Other variable codes

= |nstead of bytes, we can also use a different “unit of
alignment”: 32 bits (words), 16 bits, 4 bits (nibbles) etc

= Variable byte alignment wastes space if you have many
small gaps — nibbles do better on those.

= Recent work on word-aligned codes that efficiently “pack”
a variable number of gaps into one word — see resources
at the end

44

Introduction to Information Retrieval

Gamma codes for gap encoding

= You can get even more compression with another type of
variable length encoding: bitlevel code.

" Gamma code is the best known of these.

= First, we need unary code to be able to introduce gamma
code.

= Unary code
= Represent n as n 1s with a final 0.
= Unary code for 3is 1110

= Unary code for 40 is
110

= Unary code for 70 is:
110

45

Introduction to Information Retrieval

Gamma code

= Represent a gap G as a pair of length and offset.

Offset is the gap in binary, with the leading bit chopped off.
" For example 13 - 1101 - 101 = offset

Length is the length of offset.
= For 13 (offset 101), this is 3.
= Encode length in unary code: 1110.

= Gamma code of 13 is the concatenation of length and
offset: 1110101.

46

Introduction to Information Retrieval

Gamma code examples

number unary code length offset v code

0 0

1 10 0 0

2 110 10 0 10,0

3 1110 10 1 10,1

4 11110 110 00 110,00

9 1111111110 1110 001 1110,001

13 1110 101 1110,101

24 11110 1000 11110,1000

511 111111110 11111111 111111110,11111111

1025 11111111110 0000000001 11111111110,0000000001

47

Introduction to Information Retrieval

Length of gamma code

= The length of offset is Llog, GJ bits.
= The length of length is Llog, G! + 1 bits,
= So the length of the entire code is 2 x Log, G4 + 1 bits.

= Y codes are always of odd length.

= Gamma codes are within a factor of 2 of the optimal
encoding length log, G.

48

Introduction to Information Retrieval

Gamma code: Properties

= Gamma code is prefix-free: a valid code word is not a prefix
of any other valid code.

= Encoding is optimal within a factor of 3 (and within a factor
of 2 making additional assumptions).

= This result is independent of the distribution of gaps!

= We can use gamma codes for any distribution. Gamma
code is universal.

= Gamma code is parameter-free.

49

Introduction to Information Retrieval

Gamma codes: Alighment

= Machines have word boundaries — 8, 16, 32 bits

= Compressing and manipulating granularity of bits can be
slow.

= Variable byte encoding is aligned and thus potentially more
efficient.

= Regardless of efficiency, variable byte is conceptually
simpler at little additional space cost.

50

Introduction to Information Retrieval

Compression of Reuters

data structure size in MB
dictionary, fixed-width 11.2
dictionary, term pointers into string 7.6
~, with blocking, k =4 7.1
~, with blocking & front coding 5.9
collection (text, xml markup etc) 3600.0
collection (text) 960.0
T/D incidence matrix 40,000.0
postings, uncompressed (32-bit words) 400.0
postings, uncompressed (20 bits) 250.0
postings, variable byte encoded 116.0
postings, encoded 101.0

51

Introduction to Information Retrieval

Term-document incidence matrix

Anthony Julius The Hamlet Othello Macbeth

and Caesar Tempest
Cleopatra
ANTHONY 1 1 0 0 0 1
BRrRuUTUS 1 1 0 1 0 0
CAESAR 1 1 0 1 1 1
CALPURNIA 0 1 0 0 0 0
CLEOPATRA 1 0 0 0 0 0
MERCY 1 0 1 1 1 1
WORSER 1 0 1 1 1 0

Entry is 1 if term occurs. Example: CALPURNIA occurs in Julius
Caesar. Entry is O if term doesn’t occur. Example: CALPURNIA
doesn’t occur in The tempest.

52

Introduction to Information Retrieval

Summary

= We can now create an index for highly efficient Boolean
retrieval that is very space efficient.

= Only 10-15% of the total size of the text in the collection.

= However, we’'ve ignored positional and frequency
information.

= For this reason, space savings are less in reality.

53

Introduction to Information Retrieval

Articles to be read

« Anh, Vo Ngoc, and Alistair Moffat. 2006a. Improved word-
aligned binary compres- sion for text indexing. IEEE
Transactions on Knowledge and Data Engineering 18(6): 857-
861.

« Scholer, Falk, Hugh E. Williams, John Yiannis, and Justin Zobel.
2002. Compression of inverted indexes for fast query
evaluation. In Proc. SIGIR, pp. 222-229. ACM

« Williams, Hugh E., and Justin Zobel. 2005. Searchable words on
the web. International Journal on Digital Libraries 5(2):99-105.

« Bilttcher, Stefan, and Charles L. A. Clarke. 2006. A document-
centric approach to static index pruning in text retrieval
systems. In Proc. CIKM, pp. 182-189.

 Brisaboa, Nieves R., Antonio Farina, Gonzalo Navarro, and José
R. Paramad. 2007. Lightweight natural language text
compression. IR 10(1):1-33.

54

Introduction to Information Retrieval

Homework #5

e (a): Exercise 5.5 [x] Compute variable byte and » codes for the
postings list (777, 17743, 294068, 31251336). Use gaps
instead of doclDs where possible. Write binary codes in 8-bit
blocks.

« (b): Exercise 5.6 Consider the postings list <4, 10,11, 12, 15,
62, 63, 265, 268, 270, 400) with a correspond- ing list of gaps
4,6,1,1,3,47,1, 202, 3, 2, 130). Assume that the length of
the postings list is stored separately, so the system knows
when a postings list is complete. Us- ing variable byte
encoding: (i) What is the largest gap you can encode in 1 byte?
(ii) What is the largest gap you can encode in 2 bytes? (iii) How
many bytes will the above postings list require under this
encoding? (Count only space for encoding the sequence of
numbers.)

55

Introduction to Information Retrieval

Homework #5

* (c): Exercise 5.8 [x] From the following sequence of y-coded
gaps, reconstruct first the gap sequence and then the postings
sequence: 11100011101010TTTTTT101101111011.

« (d); Exercise 5.12 To be able to hold as many postings as
possible in main memory, it is a good idea to compress
intermediate index files during index construction. (i) This
makes merging runs in blocked sort-based indexing more
complicated. As an example, work out the y»-encoded merged
sequence of the gaps in Table 5.7. (ii) Index construction is
more space efficient when using compression. Would you also
expect it to be faster?

* (e): Exercise 5.13 (i) Show that the size of the vocabulary is
finite according to Zipf’s law and infinite according to Heaps’
law. (ii) Can we derive Heaps’ law from Zipf’s law?

56

Introduction to Information Retrieval

Homework #5

* (f): Exercise 5.17 Consider a term whose postings list has size
n, say, n = 10,000. Compare the size of the y-compressed
gap-encoded postings list if the distribution of the term is
uniform (i.e., all gaps have the same size) versus its size when

the distribution is not uniform. Which compressed postings list
is smaller?

57

Introduction to Information Retrieval

Homework #5 (Programming)

* (g): Visit the following link: Download and configure the variable
byte code program. Take and test data and evaluate the results.

« https://github.com/jermp/opt_vbyte

« (h): Visit the following link: Download and configure the Delta
code program. Take and test data and evaluate the results.

« http://bitmagic.io/dGap-gamma.html

58

Introduction to Information Retrieval

Reference

* (c): Exercise 5.8 [x] From the following sequence of y-coded
gaps, reconstruct first the gap sequence and then the postings
sequence: 11100011101010TTTTTT101101111011.

« (d); Exercise 5.12 To be able to hold as many postings as
possible in main memory, it is a good idea to compress
intermediate index files during index construction. (i) This
makes merging runs in blocked sort-based indexing more
complicated. As an example, work out the y»-encoded merged
sequence of the gaps in Table 5.7. (ii) Index construction is
more space efficient when using compression. Would you also
expect it to be faster?

* (e): Exercise 5.13 (i) Show that the size of the vocabulary is
finite according to Zipf’s law and infinite according to Heaps’
law. (ii) Can we derive Heaps’ law from Zipf’s law?

59

