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Dynamic	
  indexing:	
  Simplest	
  approach	
  

§  Maintain	
  big	
  main	
  index	
  on	
  disk	
  
§  New	
  docs	
  go	
  into	
  small	
  auxiliary	
  index	
  in	
  memory.	
  
§  Search	
  across	
  both,	
  merge	
  results	
  
§  Periodically,	
  merge	
  auxiliary	
  index	
  into	
  big	
  index	
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Take-­‐away	
  today	
  

§  Mo*va*on	
  for	
  compression	
  in	
  informa*on	
  retrieval	
  systems	
  
§  How	
  can	
  we	
  compress	
  the	
  dic*onary	
  component	
  of	
  the	
  
inverted	
  index?	
  

§  How	
  can	
  we	
  compress	
  the	
  pos*ngs	
  component	
  of	
  the	
  
inverted	
  index?	
  

§  Term	
  sta*s*cs:	
  how	
  are	
  terms	
  distributed	
  in	
  document	
  
collec*ons?	
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Why	
  compression?	
  (in	
  general)	
  

§  Use	
  less	
  disk	
  space	
  (saves	
  money)	
  
§  Keep	
  more	
  stuff	
  in	
  memory	
  (increases	
  speed)	
  
§  Increase	
  speed	
  of	
  transferring	
  data	
  from	
  disk	
  to	
  memory	
  
(again,	
  increases	
  speed)	
  
§  [read	
  compressed	
  data	
  and	
  decompress	
  in	
  memory]	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
is	
  faster	
  than	
  	
  [read	
  uncompressed	
  data]	
  

§  Premise:	
  Decompression	
  algorithms	
  are	
  fast.	
  
§  This	
  is	
  true	
  for	
  the	
  decompression	
  algorithms	
  we	
  will	
  use.	
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Why	
  compression	
  in	
  informa(on	
  retrieval?	
  

§  First,	
  we	
  will	
  consider	
  space	
  for	
  dic*onary	
  
§ Main	
  mo*va*on	
  for	
  dic*onary	
  compression:	
  make	
  it	
  small	
  
enough	
  to	
  keep	
  in	
  main	
  memory	
  

§  Then	
  for	
  the	
  pos*ngs	
  file	
  
§ Mo*va*on:	
  reduce	
  disk	
  space	
  needed,	
  decrease	
  *me	
  needed	
  
to	
  read	
  from	
  disk	
  

§  Note:	
  Large	
  search	
  engines	
  keep	
  significant	
  part	
  of	
  pos*ngs	
  in	
  
memory	
  

§  We	
  will	
  devise	
  various	
  compression	
  schemes	
  for	
  dic*onary	
  
and	
  pos*ngs.	
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Lossy	
  vs.	
  lossless	
  compression	
  

§  Lossy	
  compression:	
  Discard	
  some	
  informa*on	
  
§  Several	
  of	
  the	
  preprocessing	
  steps	
  we	
  frequently	
  use	
  can	
  be	
  
viewed	
  as	
  lossy	
  compression:	
  
§  downcasing,	
  stop	
  words,	
  porter,	
  number	
  elimina*on	
  

§  Lossless	
  compression:	
  All	
  informa*on	
  is	
  preserved.	
  
§ What	
  we	
  mostly	
  do	
  in	
  index	
  compression	
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Model	
  collec(on:	
  The	
  Reuters	
  collec(on	
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symbol	
   sta*s*cs	
   value	
  

N	
  
L	
  	
  
M	
  
	
  
	
  
	
  
T	
  

documents	
  
avg.	
  #	
  tokens	
  per	
  document	
  
word	
  types	
  
avg.	
  #	
  bytes	
  per	
  token	
  (incl.	
  spaces/punct.)	
  
avg.	
  #	
  bytes	
  per	
  token	
  (without	
  spaces/punct.)	
  
avg.	
  #	
  bytes	
  per	
  term	
  (=	
  word	
  type)	
  
Tokens	
  

800,000	
  
200	
  
400,000	
  
	
  6	
  
4.5	
  
7.5	
  
100,000,000	
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Effect	
  of	
  preprocessing	
  for	
  Reuters	
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How	
  big	
  is	
  the	
  term	
  vocabulary?	
  
§  That	
  is,	
  how	
  many	
  dis*nct	
  words	
  are	
  there?	
  
§  Can	
  we	
  assume	
  there	
  is	
  an	
  upper	
  bound?	
  

§  Not	
  really:	
  At	
  least	
  7020	
  ≈	
  1037	
  different	
  words	
  of	
  length	
  20.	
  
§  The	
  vocabulary	
  will	
  keep	
  growing	
  with	
  collec*on	
  size.	
  
§  Heaps’	
  law:	
  M	
  =	
  kTb	
  

§ M	
  is	
  the	
  size	
  of	
  the	
  vocabulary,	
  T	
  is	
  the	
  number	
  of	
  tokens	
  in	
  the	
  
collec*on.	
  

§  Typical	
  values	
  for	
  the	
  parameters	
  k	
  and	
  b	
  are:	
  30	
  ≤	
  k	
  ≤	
  100	
  and	
  
b	
  ≈	
  0.5.	
  

§  Heaps’	
  law	
  is	
  linear	
  in	
  log-­‐log	
  space.	
  
§  It	
  is	
  the	
  simplest	
  possible	
  rela*onship	
  between	
  collec*on	
  size	
  
and	
  vocabulary	
  size	
  in	
  log-­‐log	
  space.	
  

§  Empirical	
  law	
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Heaps’	
  law	
  for	
  Reuters	
  
Vocabulary	
  size	
  M	
  as	
  a	
  
func*on	
  of	
  collec*on	
  size	
  
T	
  (number	
  of	
  tokens)	
  for	
  
Reuters-­‐RCV1.	
  For	
  these	
  
data,	
  the	
  dashed	
  line	
  
log10M	
  =	
  
0.49	
  ∗	
  log10	
  T	
  +	
  1.64	
  is	
  the	
  
best	
  least	
  squares	
  fit.	
  
Thus,	
  M	
  =	
  101.64T0.49	
  
and	
  k	
  =	
  101.64	
  ≈	
  44	
  and	
  
b	
  =	
  0.49.	
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Empirical	
  fit	
  for	
  Reuters	
  

§  Good,	
  as	
  we	
  just	
  saw	
  in	
  the	
  graph.	
  
§  Example:	
  for	
  the	
  first	
  1,000,020	
  tokens	
  Heaps’	
  law	
  predicts	
  
38,323	
  terms:	
  
	
   	
   	
   	
  44	
  ×	
  1,000,0200.49	
  ≈	
  38,323	
  

§  The	
  actual	
  number	
  is	
  38,365	
  terms,	
  very	
  close	
  to	
  the	
  
predic*on.	
  

§  Empirical	
  observa*on:	
  fit	
  is	
  good	
  in	
  general.(through	
  
calcula*on)	
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Zipf’s	
  law	
  
§  Now	
  we	
  have	
  characterized	
  (describe)	
  the	
  growth	
  of	
  the	
  
vocabulary	
  in	
  collec*ons.	
  

§  We	
  also	
  want	
  to	
  know	
  how	
  many	
  frequent	
  vs.	
  infrequent	
  
terms	
  we	
  should	
  expect	
  in	
  a	
  collec*on.	
  

§  In	
  natural	
  language,	
  there	
  are	
  a	
  few	
  very	
  frequent	
  terms	
  and	
  
very	
  many	
  very	
  rare	
  terms.	
  

§  Zipf’s	
  law:	
  The	
  ith	
  most	
  frequent	
  term	
  has	
  frequency	
  cfi	
  
propor*onal	
  to	
  1/i	
  .	
  

§  	
  	
  	
  
§  cfi	
  is	
  collec*on	
  frequency:	
  the	
  number	
  of	
  occurrences	
  of	
  the	
  
term	
  ti	
  in	
  the	
  collec*on.	
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Zipf’s	
  law	
  
§  So	
  if	
  the	
  most	
  frequent	
  term	
  (the)	
  occurs	
  cf1	
  *mes,	
  then	
  the	
  
second	
  most	
  frequent	
  term	
  (of)	
  has	
  half	
  as	
  many	
  occurrences	
  	
  	
  	
  	
  	
  	
  

§  .	
  .	
  .	
  and	
  the	
  third	
  most	
  frequent	
  term	
  (and)	
  has	
  a	
  third	
  as	
  
many	
  occurrences	
  	
  

§  Equivalent:	
  cfi	
  =	
  cik	
  and	
  log	
  cfi	
  =	
  log	
  c	
  +k	
  log	
  i	
  (for	
  k	
  =	
  −1)	
  
§  Example	
  of	
  a	
  power	
  law	
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Zipf’s	
  law	
  for	
  Reuters	
  

•  Fit	
  is	
  not	
  great.	
  	
  
•  What	
  is	
  important	
  is	
  the	
  key	
  insight:	
  Few	
  frequent	
  terms,	
  many	
  

rare	
  terms.	
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Dic(onary	
  compression	
  

§  The	
  dic*onary	
  is	
  small	
  compared	
  to	
  the	
  pos*ngs	
  file.	
  
§  But	
  we	
  want	
  to	
  keep	
  it	
  in	
  memory.	
  
§  Also:	
  compe**on	
  with	
  other	
  applica*ons,	
  cell	
  phones,	
  
onboard	
  computers,	
  fast	
  startup	
  *me	
  

§  So	
  compressing	
  the	
  dic*onary	
  is	
  important.	
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Recall:	
  Dic(onary	
  as	
  array	
  of	
  fixed-­‐width	
  entries	
  

	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
   	
  	
  	
  
	
  
Space	
  needed:	
  20	
  bytes	
  	
  	
  	
  	
  	
  4	
  bytes	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  4	
  bytes	
  
for	
  Reuters:	
  (20+4+4)*400,000	
  =	
  11.2	
  MB	
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Fixed-­‐width	
  entries	
  are	
  bad.	
  

§  Most	
  of	
  the	
  bytes	
  in	
  the	
  term	
  column	
  are	
  wasted.	
  
§ We	
  allot	
  20	
  bytes	
  for	
  terms	
  of	
  length	
  1.	
  

§  We	
  can’t	
  handle	
  HYDROCHLOROFLUOROCARBONS	
  and	
  
SUPERCALIFRAGILISTICEXPIALIDOCIOUS	
  

§  Average	
  length	
  of	
  a	
  term	
  in	
  English:	
  8	
  characters	
  
§  How	
  can	
  we	
  use	
  on	
  average	
  8	
  characters	
  per	
  term?	
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Dic(onary	
  as	
  a	
  string	
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Space	
  for	
  dic(onary	
  as	
  a	
  string	
  

§  4	
  bytes	
  per	
  term	
  for	
  frequency	
  
§  4	
  bytes	
  per	
  term	
  for	
  pointer	
  to	
  pos*ngs	
  list	
  
§  8	
  bytes	
  (on	
  average)	
  for	
  term	
  in	
  string	
  
§  3	
  bytes	
  per	
  pointer	
  into	
  string	
  	
  
§  need	
  log2	
  8	
  ·∙	
  400000	
  <	
  24	
  bits	
  (	
  3	
  bytes	
  pointer)	
  to	
  resolve	
  8	
  
·∙	
  400,000	
  posi*ons	
  

§  Space:	
  400,000	
  ×	
  (4	
  +4	
  +3	
  +	
  8)	
  =	
  7.6MB	
  (compared	
  to	
  11.2	
  
MB	
  for	
  fixed-­‐width	
  array)	
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Dic(onary	
  as	
  a	
  string	
  with	
  blocking	
  

27	
  



Introduc)on	
  to	
  Informa)on	
  Retrieval	
   	
  	
   	
  	
  

28	
  

Space	
  for	
  dic(onary	
  as	
  a	
  string	
  with	
  blocking	
  

§  Example	
  block	
  size	
  k	
  =	
  4	
  
§  Where	
  we	
  used	
  4	
  ×	
  3	
  bytes	
  for	
  term	
  pointers	
  without	
  
blocking	
  	
  .	
  .	
  .	
  

§  .	
  .	
  .we	
  now	
  use	
  3	
  bytes	
  for	
  one	
  pointer	
  plus	
  4	
  bytes	
  for	
  
indica*ng	
  the	
  length	
  of	
  each	
  term.	
  

§  We	
  save	
  12	
  −	
  (3	
  +	
  4)	
  =	
  5	
  bytes	
  per	
  block.	
  
§  Total	
  savings:	
  400,000/4	
  ∗	
  5	
  =	
  0.5	
  MB	
  
§  Reduces	
  the	
  size	
  of	
  the	
  dic*onary	
  from	
  7.6	
  MB	
  to	
  7.1	
  MB.	
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Lookup	
  of	
  a	
  term	
  without	
  blocking	
  

29	
  

•  Searching the uncompressed dictionary 
takes on average (0 + 1 + 2 + 3 + 2 + 1 + 
2 + 2)/8 ≈ 1.6 steps, assuming each 
term is equally likely to come up in a 
query.  

•  For example, finding the two terms, aid 
and box, takes three and two steps, 
respectively.  
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Lookup	
  of	
  a	
  term	
  with	
  blocking:	
  (slightly)	
  
slower	
  

30	
  

•  With blocks of size k = 4, we need (0 + 1 + 2 + 3 + 4 + 1 + 2 + 3)/8 
= 2 steps on average, ≈ 25% more. For example, finding den takes 
one binary search step and two steps through the block.  

•  By increasing k, we can get the size of the compressed dictionary 
arbitrarily close to the minimum of 400,000 × (4 + 4 + 1 + 8) = 6.8 
MB, but term lookup becomes prohibitively slow for large values of 
k.  
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Front	
  coding	
  (Further	
  compression)	
  

	
   	
   	
  One	
  block	
  in	
  blocked	
  compression	
  (k	
  =	
  4)	
  .	
  .	
  .	
  
	
  8	
  a	
  u	
  t	
  o	
  m	
  a	
  t	
  a	
  8	
  a	
  u	
  t	
  o	
  m	
  a	
  t	
  e	
  9	
  a	
  u	
  t	
  o	
  m	
  a	
  t	
  i	
  c	
  10	
  a	
  u	
  t	
  o	
  m	
  a	
  t	
  i	
  o	
  n	
  
	
   	
   	
   	
   	
   	
   	
   	
   	
  ⇓	
  

	
  	
  	
   	
   	
   	
  .	
  .	
  .	
  further	
  compressed	
  with	
  front	
  coding.	
  
	
   	
   	
   	
  8	
  a	
  u	
  t	
  o	
  m	
  a	
  t	
  ∗	
  a	
  1	
  ⋄	
  e	
  2	
  ⋄	
  i	
  c	
  3	
  ⋄	
  i	
  o	
  n	
  

31	
  

•  In the case of Reuters, front coding saves another 1.2 MB. 
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Dic(onary	
  compression	
  for	
  Reuters:	
  Summary	
  

32	
  

data	
  structure	
   size	
  in	
  MB	
  
dic*onary,	
  fixed-­‐width	
  
dic*onary,	
  term	
  pointers	
  into	
  string	
  
∼,	
  with	
  blocking,	
  k	
  =	
  4	
  
∼,	
  with	
  blocking	
  &	
  front	
  coding	
  

11.2	
  
7.6	
  
7.1	
  
5.9	
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Exercise	
  5.2	
  

Tuesday	
  28	
  May	
  19	
  33	
  

•  Es*mate	
  the	
  space	
  usage	
  of	
  the	
  Reuters-­‐RCV1	
  dic*onary	
  with	
  blocks	
  of	
  size	
  k	
  =	
  8	
  
and	
  k	
  =	
  16	
  in	
  blocked	
  dic*onary	
  storage.	
  	
  

•  Solu*on:	
  
–  For	
  K=8	
  	
  

•  We	
  will	
  save	
  :(8-­‐1)	
  *	
  3	
  =	
  21	
  bytes	
  for	
  term	
  pointer	
  
•  Need	
  addi*onal	
  k	
  =8	
  for	
  term	
  length	
  so	
  space	
  reduced	
  by	
  13	
  bytes	
  per	
  8	
  
term	
  block	
  

•  Total	
  space	
  reduced	
  by=	
  400000	
  *	
  13	
  /8	
  =	
  0.65	
  MB	
  
•  Total	
  space	
  is:	
  7.6	
  –	
  0.65	
  =	
  6.95	
  MB	
  

–  For	
  K=16	
  
•  We	
  will	
  save	
  :(16-­‐1)	
  *	
  3	
  =	
  45	
  bytes	
  for	
  term	
  pointer	
  
•  Need	
  addi*onal	
  k=16	
  for	
  term	
  length	
  so	
  space	
  reduced	
  by	
  29	
  bytes	
  per	
  16	
  
term	
  block	
  	
  

•  Total	
  space	
  reduced	
  by=	
  400000	
  *	
  29	
  /16	
  =	
  0.725	
  MB	
  	
  
•  Total	
  space	
  is:	
  7.6	
  –	
  0.725	
  =	
  6.875	
  MB	
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Exercise	
  5.3	
  (Read	
  it	
  Yourself)	
  

Tuesday	
  28	
  May	
  19	
  34	
  

•  Es*mate	
  the	
  *me	
  needed	
  for	
  term	
  lookup	
  in	
  the	
  compressed	
  dic*onary	
  of	
  Reuters	
  
RCV1	
  with	
  block	
  sizes	
  of	
  k=4	
  (Figure5.6,b),	
  k=8,	
  and	
  k=16.	
  What	
  is	
  the	
  slowdown	
  
compared	
  with	
  k	
  =	
  1	
  (Figure	
  5.6,	
  a)?	
  	
  

•  Solu*on:	
  
–  We	
  first	
  search	
  the	
  leaf	
  in	
  the	
  binary	
  tree,	
  then	
  search	
  the	
  par*cular	
  term	
  in	
  

the	
  block.	
  
Average	
  steps	
  needed	
  to	
  look	
  up	
  term	
  is	
  
log(N/k)	
  -­‐1+	
  k/2,	
  For	
  Reuters-­‐RCV1,	
  N=400000	
  	
  

–  Compare	
  it	
  with	
  the	
  related	
  figure	
  or	
  text	
  in	
  Sec*on	
  5.2.2	
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Outline	
  

❶  	
  Recap	
  	
  

❷  	
  Compression	
  
❸  	
  Term	
  sta*s*cs	
  

❹  Dic*onary	
  compression	
  

❺  Pos*ngs	
  compression	
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Pos(ngs	
  compression	
  

§  The	
  pos*ngs	
  file	
  is	
  much	
  larger	
  than	
  the	
  dic*onary,	
  factor	
  
of	
  at	
  least	
  10.	
  

§  Key	
  desideratum	
  (needed):	
  store	
  each	
  pos*ng	
  compactly	
  
§  A	
  pos*ng	
  for	
  our	
  purposes	
  is	
  a	
  docID.	
  
§  For	
  Reuters	
  (800,000	
  documents),	
  we	
  would	
  use	
  32	
  bits	
  
per	
  docID	
  when	
  using	
  4-­‐byte	
  integers.	
  

§  Alterna*vely,	
  we	
  can	
  use	
  log2	
  800,000	
  ≈	
  19.6	
  <	
  20	
  bits	
  per	
  
docID.	
  

§  Our	
  goal:	
  use	
  a	
  lot	
  less	
  than	
  20	
  bits	
  per	
  docID.	
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Key	
  idea:	
  Store	
  gaps	
  instead	
  of	
  docIDs	
  

§  Each	
  pos*ngs	
  list	
  is	
  ordered	
  in	
  increasing	
  order	
  of	
  docID.	
  
§  Example	
  pos*ngs	
  list:	
  COMPUTER:	
  283154,	
  283159,	
  283202,	
  .	
  .	
  .	
  
§  It	
  suffices	
  to	
  store	
  gaps:	
  283159-­‐283154=5,	
  283202-­‐283154=43	
  
§  Example	
  pos*ngs	
  list	
  using	
  gaps	
  :	
  COMPUTER:	
  283154,	
  5,	
  43,	
  .	
  .	
  .	
  
§  Gaps	
  for	
  frequent	
  terms	
  are	
  small.	
  
§  Thus:	
  We	
  can	
  encode	
  small	
  gaps	
  with	
  fewer	
  than	
  20	
  bits.	
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Gap	
  encoding	
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Variable	
  length	
  encoding	
  

§  Aim:	
  
§  For	
  ARACHNOCENTRIC	
  and	
  other	
  rare	
  terms,	
  we	
  will	
  use	
  
about	
  20	
  bits	
  per	
  gap	
  (=	
  pos*ng).	
  

§  For	
  THE	
  and	
  other	
  very	
  frequent	
  terms,	
  we	
  will	
  use	
  only	
  a	
  
few	
  bits	
  per	
  gap	
  (=	
  pos*ng).	
  

§  In	
  order	
  to	
  implement	
  this,	
  we	
  need	
  to	
  devise	
  some	
  form	
  
of	
  variable	
  length	
  encoding.	
  

§  Variable	
  length	
  encoding	
  uses	
  few	
  bits	
  for	
  small	
  gaps	
  and	
  
many	
  bits	
  for	
  large	
  gaps.	
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Variable	
  byte	
  (VB)	
  code	
  
§  Used	
  by	
  many	
  commercial/research	
  systems	
  
§  Good	
  low-­‐tech	
  blend	
  of	
  variable-­‐length	
  encoding	
  and	
  
sensi*vity	
  to	
  alignment	
  matches	
  (bit-­‐level	
  codes,	
  see	
  later).	
  

§  Dedicate	
  1	
  bit	
  (high	
  bit)	
  to	
  be	
  a	
  con*nua*on	
  bit	
  c.	
  
§  If	
  the	
  gap	
  G	
  fits	
  within	
  7	
  bits,	
  binary-­‐encode	
  it	
  in	
  the	
  7	
  
available	
  bits	
  and	
  set	
  c	
  =	
  1.	
  

§  Else:	
  encode	
  lower-­‐order	
  7	
  bits	
  and	
  then	
  use	
  one	
  or	
  more	
  
addi*onal	
  bytes	
  to	
  encode	
  the	
  higher	
  order	
  bits	
  using	
  the	
  
same	
  algorithm.	
  

§  At	
  the	
  end	
  set	
  the	
  con*nua*on	
  bit	
  of	
  the	
  last	
  byte	
  to	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  
(c	
  =	
  1)	
  and	
  of	
  the	
  other	
  bytes	
  to	
  0	
  (c	
  =	
  0).	
  

40	
  



Introduc)on	
  to	
  Informa)on	
  Retrieval	
   	
  	
   	
  	
  

41	
  

VB	
  code	
  examples	
  

41	
  

docIDs	
  
gaps	
  
VB	
  code	
  

824	
  
	
  
00000110	
  	
  10111000	
  

829	
  
5	
  
10000101	
  

215406	
  
214577	
  
00001101	
  00001100	
  10110001	
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VB	
  code	
  encoding	
  algorithm	
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VB	
  code	
  decoding	
  algorithm	
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Other	
  variable	
  codes	
  

§  Instead	
  of	
  bytes,	
  we	
  can	
  also	
  use	
  a	
  different	
  “unit	
  of	
  
alignment”:	
  32	
  bits	
  (words),	
  16	
  bits,	
  4	
  bits	
  (nibbles)	
  etc	
  

§  Variable	
  byte	
  alignment	
  wastes	
  space	
  if	
  you	
  have	
  many	
  
small	
  gaps	
  –	
  nibbles	
  do	
  be�er	
  on	
  those.	
  

§  Recent	
  work	
  on	
  word-­‐aligned	
  codes	
  that	
  efficiently	
  “pack”	
  
a	
  variable	
  number	
  of	
  gaps	
  into	
  one	
  word	
  –	
  see	
  resources	
  
at	
  the	
  end	
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Gamma	
  codes	
  for	
  gap	
  encoding	
  
§  You	
  can	
  get	
  even	
  more	
  compression	
  with	
  another	
  type	
  of	
  
variable	
  length	
  encoding:	
  bitlevel	
  code.	
  

§  Gamma	
  code	
  is	
  the	
  best	
  known	
  of	
  these.	
  
§  First,	
  we	
  need	
  unary	
  code	
  to	
  be	
  able	
  to	
  introduce	
  gamma	
  
code.	
  

§  Unary	
  code	
  
§  Represent	
  n	
  as	
  n	
  1s	
  with	
  a	
  final	
  0.	
  
§  Unary	
  code	
  for	
  3	
  is	
  1110	
  
§  Unary	
  code	
  for	
  40	
  is	
  
11111111111111111111111111111111111111110	
  

§  Unary	
  code	
  for	
  70	
  is:	
  	
  
11111111111111111111111111111111111111111111111111111111111111111111110	
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Gamma	
  code	
  

§  Represent	
  a	
  gap	
  G	
  as	
  a	
  pair	
  of	
  length	
  and	
  offset.	
  
§  Offset	
  is	
  the	
  gap	
  in	
  binary,	
  with	
  the	
  leading	
  bit	
  chopped	
  off.	
  

§  For	
  example	
  13	
  →	
  1101	
  →	
  101	
  =	
  offset	
  
§  Length	
  is	
  the	
  length	
  of	
  offset.	
  

§  For	
  13	
  (offset	
  101),	
  this	
  is	
  3.	
  
§  Encode	
  length	
  in	
  unary	
  code:	
  1110.	
  

§  Gamma	
  code	
  of	
  13	
  is	
  the	
  concatena*on	
  of	
  length	
  and	
  
offset:	
  1110101.	
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Gamma	
  code	
  examples	
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Length	
  of	
  gamma	
  code	
  

§  The	
  length	
  of	
  offset	
  is	
  ⌊log2	
  G⌋	
  bits.	
  
§  The	
  length	
  of	
  length	
  is	
  ⌊log2	
  G⌋	
  +	
  1	
  bits,	
  
§  So	
  the	
  length	
  of	
  the	
  en*re	
  code	
  is	
  2	
  x	
  ⌊log2	
  G⌋	
  +	
  1	
  bits.	
  

§  ϒ	
  codes	
  are	
  always	
  of	
  odd	
  length.	
  
§  Gamma	
  codes	
  are	
  within	
  a	
  factor	
  of	
  2	
  of	
  the	
  op*mal	
  
encoding	
  length	
  log2	
  G.	
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Gamma	
  code:	
  Proper(es	
  

§  Gamma	
  code	
  is	
  prefix-­‐free:	
  a	
  valid	
  code	
  word	
  is	
  not	
  a	
  prefix	
  
of	
  any	
  other	
  valid	
  code.	
  

§  Encoding	
  is	
  op*mal	
  within	
  a	
  factor	
  of	
  3	
  (and	
  within	
  a	
  factor	
  
of	
  2	
  making	
  addi*onal	
  assump*ons).	
  

§  This	
  result	
  is	
  independent	
  of	
  the	
  distribu*on	
  of	
  gaps!	
  
§  We	
  can	
  use	
  gamma	
  codes	
  for	
  any	
  distribu*on.	
  Gamma	
  
code	
  is	
  universal.	
  

§  Gamma	
  code	
  is	
  parameter-­‐free.	
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Gamma	
  codes:	
  Alignment	
  

§  Machines	
  have	
  word	
  boundaries	
  –	
  8,	
  16,	
  32	
  bits	
  
§  Compressing	
  and	
  manipula*ng	
  granularity	
  of	
  bits	
  can	
  be	
  
slow.	
  

§  Variable	
  byte	
  encoding	
  is	
  aligned	
  and	
  thus	
  poten*ally	
  more	
  
efficient.	
  

§  Regardless	
  of	
  efficiency,	
  variable	
  byte	
  is	
  conceptually	
  
simpler	
  at	
  li�le	
  addi*onal	
  space	
  cost.	
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Compression	
  of	
  Reuters	
  

51	
  

data	
  structure	
   size	
  in	
  MB	
  
dic*onary,	
  fixed-­‐width	
  
dic*onary,	
  term	
  pointers	
  into	
  string	
  
∼,	
  with	
  blocking,	
  k	
  =	
  4	
  
∼,	
  with	
  blocking	
  &	
  front	
  coding	
  
collec*on	
  (text,	
  xml	
  markup	
  etc)	
  
collec*on	
  (text)	
  
T/D	
  incidence	
  matrix	
  
pos*ngs,	
  uncompressed	
  (32-­‐bit	
  words)	
  
pos*ngs,	
  uncompressed	
  (20	
  bits)	
  
pos*ngs,	
  variable	
  byte	
  encoded	
  
pos*ngs,	
  	
  encoded	
  

11.2	
  
7.6	
  
7.1	
  
5.9	
  

3600.0	
  
960.0	
  

40,000.0	
  
400.0	
  
250.0	
  
116.0	
  
101.0	
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Term-­‐document	
  incidence	
  matrix	
  

Entry	
  is	
  1	
  if	
  term	
  occurs.	
  Example:	
  CALPURNIA	
  occurs	
  in	
  Julius	
  
Caesar.	
  Entry	
  is	
  0	
  if	
  term	
  doesn’t	
  occur.	
  Example:	
  CALPURNIA	
  
doesn’t	
  occur	
  in	
  The	
  tempest.	
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Summary	
  

§  We	
  can	
  now	
  create	
  an	
  index	
  for	
  highly	
  efficient	
  Boolean	
  
retrieval	
  that	
  is	
  very	
  space	
  efficient.	
  

§  Only	
  10-­‐15%	
  of	
  the	
  total	
  size	
  of	
  the	
  text	
  in	
  the	
  collec*on.	
  
§  However,	
  we’ve	
  ignored	
  posi*onal	
  and	
  frequency	
  
informa*on.	
  

§  For	
  this	
  reason,	
  space	
  savings	
  are	
  less	
  in	
  reality.	
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Homework	
  #5	
  

•  (a):	
  Exercise 5.5 [⋆] Compute variable byte and γ codes for the 
postings list ⟨777, 17743, 294068, 31251336⟩. Use gaps 
instead of docIDs where possible. Write binary codes in 8-bit 
blocks.  

•  (b): Exercise 5.6 Consider the postings list ⟨4, 10, 11, 12, 15, 
62, 63, 265, 268, 270, 400⟩ with a correspond- ing list of gaps 
⟨4, 6, 1, 1, 3, 47, 1, 202, 3, 2, 130⟩. Assume that the length of 
the postings list is stored separately, so the system knows 
when a postings list is complete. Us- ing variable byte 
encoding: (i) What is the largest gap you can encode in 1 byte? 
(ii) What is the largest gap you can encode in 2 bytes? (iii) How 
many bytes will the above postings list require under this 
encoding? (Count only space for encoding the sequence of 
numbers.)  
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Homework	
  #5	
  

•  (c):	
  Exercise 5.8 [⋆] From the following sequence of γ-coded 
gaps, reconstruct first the gap sequence and then the postings 
sequence: 1110001110101011111101101111011. 	
  

•  (d); Exercise 5.12 To be able to hold as many postings as 
possible in main memory, it is a good idea to compress 
intermediate index files during index construction. (i) This 
makes merging runs in blocked sort-based indexing more 
complicated. As an example, work out the γ-encoded merged 
sequence of the gaps in Table 5.7. (ii) Index construction is 
more space efficient when using compression. Would you also 
expect it to be faster? 	
  

•  (e): Exercise 5.13 (i) Show that the size of the vocabulary is 
finite according to Zipf’s law and infinite according to Heaps’ 
law. (ii) Can we derive Heaps’ law from Zipf’s law?  
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Homework	
  #5	
  

•  (f):	
  Exercise 5.17 Consider a term whose postings list has size 
n, say, n = 10,000. Compare the size of the γ-compressed 
gap-encoded postings list if the distribution of the term is 
uniform (i.e., all gaps have the same size) versus its size when 
the distribution is not uniform. Which compressed postings list 
is smaller?  
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Homework	
  #5	
  (Programming)	
  

•  (g):	
  Visit	
  the	
  following	
  link:	
  Download	
  and	
  configure	
  the	
  variable	
  
byte	
  code	
  program.	
  Take	
  and	
  test	
  data	
  and	
  evaluate	
  the	
  results.	
  	
  

	
  
•  https://github.com/jermp/opt_vbyte 

•  (h): Visit the following link: Download and configure the Delta  
code program. Take and test data and evaluate the results.  

•  http://bitmagic.io/dGap-gamma.html 
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•  (c):	
  Exercise 5.8 [⋆] From the following sequence of γ-coded 
gaps, reconstruct first the gap sequence and then the postings 
sequence: 1110001110101011111101101111011. 	
  

•  (d); Exercise 5.12 To be able to hold as many postings as 
possible in main memory, it is a good idea to compress 
intermediate index files during index construction. (i) This 
makes merging runs in blocked sort-based indexing more 
complicated. As an example, work out the γ-encoded merged 
sequence of the gaps in Table 5.7. (ii) Index construction is 
more space efficient when using compression. Would you also 
expect it to be faster? 	
  

•  (e): Exercise 5.13 (i) Show that the size of the vocabulary is 
finite according to Zipf’s law and infinite according to Heaps’ 
law. (ii) Can we derive Heaps’ law from Zipf’s law?  
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