
Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

Index	
 Construc*on	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Plan	

§  Last	
 lecture:	

§  Dic*onary	
 data	
 structures	

§  Tolerant	
 retrieval	

§  Wildcards	

§  Spell	
 correc*on	

§  Soundex	

§  This	
 *me:	

§  Index	
 construc*on	

a-hu
hy-m

n-z

mo

on

among

$m mace

abandon

amortize

madden

among

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Index	
 construc(on	

§  How	
 do	
 we	
 construct	
 an	
 index?	
 (Previous	
 study)	

§  What	
 strategies	
 can	
 we	
 use	
 with	
 limited	
 main	

memory?	
 (Previous	
 study)	

Ch. 4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Hardware	
 basics	

§  Many	
 design	
 decisions	
 in	
 informa*on	
 retrieval	
 are	

based	
 on	
 the	
 characteris*cs	
 of	
 hardware	
 e.g.	
 size	
 of	

main	
 memory,	
 disk	
 and	
 cache,	
 read,	
 write	
 and	
 other	

opera*ons.	

§  We	
 begin	
 by	
 reviewing	
 hardware	
 basics	

Sec. 4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Hardware	
 basics	

§  Access	
 to	
 data	
 in	
 memory	
 is	
 much	
 faster	
 than	
 access	

to	
 data	
 on	
 disk.	

§  Disk	
 seeks:	
 No	
 data	
 is	
 transferred	
 from	
 disk	
 while	
 the	

disk	
 head	
 is	
 being	
 posi*oned.	

§  Therefore:	
 Transferring	
 one	
 large	
 chunk	
 of	
 data	
 from	
 disk	

to	
 memory	
 is	
 faster	
 than	
 transferring	
 many	
 small	
 chunks.	

§  Disk	
 I/O	
 is	
 block-­‐based:	
 Reading	
 and	
 wri*ng	
 of	
 en*re	

blocks	
 (as	
 opposed	
 to	
 smaller	
 chunks).	

§  Block	
 sizes:	
 8KB	
 to	
 256	
 KB.	

Sec. 4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Hardware	
 basics	

§  Servers	
 used	
 in	
 IR	
 systems	
 now	
 typically	
 have	
 several	

GB	
 of	
 main	
 memory,	
 some*mes	
 tens	
 of	
 GB.	
 	

§  Available	
 disk	
 space	
 is	
 several	
 (2–3)	
 orders	
 of	

magnitude	
 larger.	

§  Fault	
 tolerance	
 is	
 very	
 expensive:	
 It’s	
 much	
 cheaper	

to	
 use	
 many	
 regular	
 machines	
 rather	
 than	
 one	
 fault	

tolerant	
 machine.	

Sec. 4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Hardware	
 assump(ons	
 for	
 this	
 lecture	

Sec. 4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

RCV1:	
 Our	
 collec(on	
 for	
 this	
 lecture	

§  Shakespeare’s	
 collected	
 works	
 definitely	
 aren’t	

large	
 enough	
 for	
 demonstra*ng	
 many	
 of	
 the	
 points	

in	
 this	
 course.	

§  The	
 collec*on	
 we’ll	
 use	
 isn’t	
 really	
 large	
 enough	

either,	
 but	
 it’s	
 publicly	
 available	
 and	
 is	
 at	
 least	
 a	

more	
 plausible	
 example.	

§  As	
 an	
 example	
 for	
 applying	
 scalable	
 index	

construc*on	
 algorithms,	
 we	
 will	
 use	
 the	
 Reuters	

RCV1	
 collec*on.	

§  This	
 is	
 one	
 year	
 of	
 Reuters	
 newswire	
 (part	
 of	
 1995	

and	
 1996)	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

A	
 Reuters	
 RCV1	
 document	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Reuters	
 RCV1	
 sta(s(cs	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

§  Documents	
 are	
 parsed	
 to	
 extract	
 words	
 and	
 these	

are	
 saved	
 with	
 the	
 Document	
 ID.	

I did enact Julius
Caesar I was killed
i' the Capitol;
Brutus killed me.

Doc 1

So let it be with
Caesar. The noble
Brutus hath told you
Caesar was ambitious

Doc 2

Recall	
 IIR	
 1	
 index	
 construc(on	

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Term Doc #
I 1
did 1
enact 1
julius 1
caesar 1
I 1
was 1
killed 1
i' 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Term Doc #
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
I 1
I 1
i' 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

	
 Key	
 step	

§  A_er	
 all	
 documents	
 have	
 been	

parsed,	
 the	
 inverted	
 file	
 is	

sorted	
 by	
 terms.	
 	

We focus on this sort step.
We have 100M items to sort.

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Scaling	
 index	
 construc(on	

§  In-­‐memory	
 index	
 construc*on	
 does	
 not	
 scale	

§  Can’t	
 stuff	
 en*re	
 collec*on	
 into	
 memory,	
 sort,	
 then	
 write	

back	

§  How	
 can	
 we	
 construct	
 an	
 index	
 for	
 very	
 large	

collec*ons?	

§  Taking	
 into	
 account	
 the	
 hardware	
 constraints	
 we	
 just	

learned	
 about	
 .	
 .	
 .memory,	
 disk,	
 speed,	
 etc.	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Sort	
 based	
 index	
 construc(on	

§  As	
 we	
 build	
 the	
 index,	
 we	
 parse	
 docs	
 one	
 at	
 a	
 *me.	

§  While	
 building	
 the	
 index,	
 we	
 cannot	
 easily	
 exploit	

compression	
 tricks	
 	
 	
 (you	
 can,	
 but	
 much	
 more	
 complex)	

§  The	
 final	
 pos*ngs	
 for	
 any	
 term	
 are	
 incomplete	
 un*l	
 the	
 end.	

§  At	
 12	
 bytes	
 per	
 non-­‐posi*onal	
 pos*ngs	
 entry	
 (term,	
 doc,	

freq),	
 demands	
 a	
 lot	
 of	
 space	
 for	
 large	
 collec*ons.	

§  T	
 =	
 100,000,000	
 in	
 the	
 case	
 of	
 RCV1,	
 so	
 …	
 we	
 can	
 do	
 this	
 in	

memory	
 in	
 2009,	
 but	
 typical	
 collec*ons	
 are	
 much	
 larger.	
 	
 E.g.,	

the	
 New	
 York	
 Times	
 provides	
 an	
 index	
 of	
 >150	
 years	
 of	

newswire	

§  Thus:	
 We	
 need	
 to	
 store	
 intermediate	
 results	
 on	
 disk.	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Sort	
 in	
 “disk”	
 or	
 “memory”	

§  Can	
 we	
 use	
 the	
 previous	
 index	
 construc*on	

algorithm	
 (simple,	
 posi*onal	
 index,	
 or	
 with	
 skip	

pointers)	
 for	
 larger	
 collec*ons,	
 but	
 by	
 using	
 disk	

instead	
 of	
 memory?	

§  No:	
 Sor*ng	
 T	
 =	
 100,000,000	
 records	
 on	
 disk	
 is	
 too	

slow	
 –	
 too	
 many	
 disk	
 seeks.	

§  We	
 need	
 an	
 external	
 sor*ng	
 algorithm.	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

BoIleneck	

§  Parse	
 and	
 build	
 pos*ngs	
 entries	
 one	
 doc	
 at	
 a	
 *me	

§  Now	
 sort	
 pos*ngs	
 entries	
 by	
 term	
 (then	
 by	
 doc	

within	
 each	
 term)	

§  Doing	
 this	
 with	
 random	
 disk	
 seeks	
 would	
 be	
 too	
 slow	

–	
 must	
 sort	
 T=100M	
 records	

If every comparison took 2 disk seeks, and N items could be
sorted with N log2N comparisons, how long would this take?

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

BSBI:	
 Blocked	
 sort-­‐based	
 Indexing	

(Sor(ng	
 with	
 fewer	
 disk	
 seeks)	

§  12-­‐byte	
 (4+4+4)	
 records	
 (term,	
 doc,	
 freq).	

§  These	
 are	
 generated	
 as	
 we	
 parse	
 docs.	

§  Must	
 now	
 sort	
 100M	
 such	
 12-­‐byte	
 records	
 by	
 term.	

§  Define	
 a	
 Block	
 ~	
 10M	
 such	
 records	

§  Can	
 easily	
 fit	
 a	
 couple	
 into	
 memory.	

§  Will	
 have	
 10	
 such	
 blocks	
 to	
 start	
 with.	

§  Basic	
 idea	
 of	
 algorithm:	

§  Accumulate	
 pos*ngs	
 for	
 each	
 block,	
 sort,	
 write	
 to	
 disk.	

§  Then	
 merge	
 the	
 blocks	
 into	
 one	
 long	
 sorted	
 order.	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Sor(ng	
 and	
 merging	
 of	
 terms	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Sor(ng	
 10	
 blocks	
 of	
 10M	
 records	

§  First,	
 read	
 each	
 block	
 and	
 sort	
 within:	
 	
 	

§  Quicksort	
 takes	
 2N	
 ln	
 N	
 expected	
 steps	
 (if	
 is	
 on	
 disk)	

§  In	
 our	
 case	
 2x(10M	
 ln	
 10M)	
 steps	

§  Exercise:	
 es*mate	
 total	
 *me	
 to	
 read	
 each	
 block	
 from	

disk	
 and	
 quicksort	
 it.	

§  10	
 *mes	
 this	
 es*mate	
 –	
 gives	
 us	
 10	
 sorted	
 runs	
 of	
 10M	

records	
 each.	

§  Done	
 straighlorwardly,	
 need	
 2	
 copies	
 of	
 data	
 on	
 disk	

§  But	
 can	
 op*mize	
 this	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Algorithm	
 descrip(on	

§  The	
 algorithm	
 parses	
 documents	
 into	
 termID–docID	
 pairs	
 and	

accumulates	
 the	
 pairs	
 in	
 memory	
 un*l	
 a	
 block	
 of	
 a	
 fixed	
 size	
 is	

full	
 (PARSENEXTBLOCK	
).	
 	

§  We	
 choose	
 the	
 block	
 size	
 to	
 fit	
 comfortably	
 into	
 memory	

to	
 permit	
 a	
 fast	
 in-­‐memory	
 sort.	
 	

§  The	
 block	
 is	
 then	
 inverted	
 and	
 wrinen	
 to	
 disk.	
 	

§  Inversion	
 involves	
 two	
 steps.	
 First,	
 we	
 sort	
 the	
 termID–
docID	
 pairs.	
 Next,	
 we	
 collect	
 all	
 termID–docID	
 pairs	
 with	

the	
 same	
 termID	
 into	
 a	
 pos*ngs	
 list,	
 where	
 a	
 pos)ng	
 is	

simply	
 a	
 docID.	
 	

§  The	
 result,	
 an	
 inverted	
 index	
 for	
 the	
 block	
 we	
 have	
 just	

read,	
 is	
 then	
 wrinen	
 to	
 disk.	
 	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	
 Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

How	
 to	
 merge	
 the	
 sorted	
 runs?	

§  To	
 do	
 the	
 merging,	
 open	
 all	
 block	
 files	
 simultaneously,	
 and	

maintain	
 small	
 read	
 buffers	
 for	
 the	
 ten	
 blocks	
 we	
 are	
 reading.	

§  A	
 write	
 buffer	
 for	
 the	
 final	
 merged	
 index	
 we	
 are	
 wri*ng.	
 	

§  In	
 each	
 itera*on,	
 we	
 select	
 the	
 lowest	
 termID	
 that	
 has	
 not	

been	
 processed	
 yet	
 using	
 a	
 priority	
 queue	
 or	
 a	
 similar	
 data	

structure.	
 	

§  All	
 pos*ngs	
 lists	
 for	
 this	
 termID	
 are	
 read	
 and	
 merged,	
 and	
 the	

merged	
 list	
 is	
 wrinen	
 back	
 to	
 disk.	
 	

§  Each	
 read	
 buffer	
 is	
 refilled	
 from	
 its	
 file	
 when	
 necessary.	
 	

Sec. 4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Remaining	
 problem	
 with	
 BSBI	

§  Our	
 assump*on	
 was	
 to	
 keep	
 the	
 dic*onary	
 in	
 memory.	

§  We	
 need	
 the	
 dic*onary	
 (which	
 grows	
 dynamically)	
 in	
 order	
 to	

implement	
 a	
 term	
 to	
 termID	
 mapping	
 (BSBI).	

§  Actually,	
 we	
 could	
 work	
 with	
 term,docID	
 pos*ngs	
 (SPIMI)	

instead	
 of	
 termID,docID	
 pos*ngs	
 .	
 .	
 .	

§  .	
 .	
 .	
 but	
 then	
 intermediate	
 files	
 become	
 very	
 large.	
 (We	
 would	

end	
 up	
 with	
 a	
 scalable,	
 but	
 very	
 slow	
 index	
 construc*on	

method.)	

Sec. 4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Class	
 Exercise
§  Exercise	
 4.1	

If	
 we	
 need	
 T	
 log	
 T	
 comparisons	
 (where	
 T	
 is	
 the	

number	
 of	
 termID–docID	
 pairs)	
 and	
 2	
 two	
 disk	
 seeks	

for	
 each	
 comparison,	
 how	
 much	
 *me	
 would	
 index	

construc*on	
 for	
 Reuters-­‐RCV1	
 take	
 if	
 we	
 used	
 disk	

instead	
 of	
 memory	
 for	
 storage	
 and	
 an	
 unop*mized	

sor*ng	
 algorithm	
 (i.e.,	
 not	
 an	
 external	
 sor*ng	

algorithm)?	
 Use	
 the	
 system	
 parameters	
 in	
 Table	
 4.1.	
 	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Solu(on
⇒ Disk	
 seek	
 *me	
 =	
 5x10-­‐3	
 s	

	
 2	
 x	
 (5x10-­‐3)	
 seconds	
 per	
 comparison	

	
 Transfer	
 *me	
 =	
 2	
 x	
 10-­‐8	
 s	
 per	
 byte	
 	

	
 Low	
 level	
 opera*ons	
 =	
 10-­‐8	
 seconds	

	

⇒ How	
 long	
 would	
 it	
 take	
 to	
 make	
 T(log₂T)	

comparisons	
 with	
 2	
 disk	
 seeks	
 per	
 comparison?	

	

⇒ T(log₂T)	
 x	
 2(5x10-­‐3s)	
 	

...consider	
 transfer	
 *me	
 and	
 any	
 low	
 level	
 opera*ons	

⇒ Or	
 see	
 on	
 the	
 next	
 slide	

	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Solu(on	
 #2	

§  100,000,000	
 records	

§  Nlog2(N)	
 is	
 =	
 2,657,542,475.91	
 comparisons	

§  2	
 disk	
 seeks	
 per	
 comparison	
 =	
 (2,657,542,475.91	
 x	
 0.005)	
 =	

13,287,712.38	
 seconds	
 x	
 2	

§  =	
 26,575,424.76	
 seconds	

§  =	
 442,923.75	
 minutes	

§  =	
 7,382.06	
 hours	

§  =	
 307.59	
 days	
 	

§  =	
 84%	
 of	
 a	
 year	

§  =	
 1%	
 of	
 your	
 life	

26	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 #	
 4	
 (a)
§  Exercise	
 4.2	
 [⋆]	
 How	
 would	
 you	
 create	
 the	
 dic*onary	

in	
 blocked	
 sort-­‐based	
 indexing	
 on	
 the	
 fly	
 to	
 avoid	
 an	

extra	
 pass	
 through	
 the	
 data?	
 	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

SPIMI:	
 Single-­‐pass	
 in-­‐memory	
 indexing	

§  Key	
 idea	
 1:	
 Generate	
 separate	
 dic*onaries	
 for	
 each	

block	
 –	
 no	
 need	
 to	
 maintain	
 term-­‐termID	
 mapping	

across	
 blocks.	

§  Key	
 idea	
 2:	
 Don’t	
 sort.	
 Accumulate	
 pos*ngs	
 in	

pos*ngs	
 lists	
 as	
 they	
 occur.	

§  With	
 these	
 two	
 ideas	
 we	
 can	
 generate	
 a	
 complete	

inverted	
 index	
 for	
 each	
 block.	

§  These	
 separate	
 indexes	
 can	
 then	
 be	
 merged	
 into	
 one	

big	
 index.	

Sec. 4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

	

SPIMI-­‐Invert	

§  Merging	
 of	
 blocks	
 is	
 analogous	
 to	
 BSBI.	

Sec. 4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

SPIMI:	
 Process	

§  SPIMI	
 can	
 index	
 collec*ons	
 of	
 any	
 size	
 as	
 long	
 as	
 there	
 is	

enough	
 disk	
 space	
 available.	
 	

§  The	
 SPIMI	
 algorithm	
 is	
 shown	
 earlier.	
 The	
 part	
 of	
 the	

algorithm	
 that	
 parses	
 documents	
 and	
 turns	
 them	
 into	
 a	

stream	
 of	
 term–docID	
 pairs,	
 which	
 we	
 call	
 tokens	
 here,	
 has	

been	
 omined.	
 	

§  SPIMI-­‐INVERT	
 is	
 called	
 repeatedly	
 on	
 the	
 token	
 stream	
 un*l	
 	

the	
 en*re	
 collec*on	
 has	
 been	
 processed.	
 	

§  Tokens	
 are	
 processed	
 one	
 by	
 one	
 (line	
 4).	
 When	
 a	
 term	
 occurs	

for	
 the	
 first	
 *me,	
 it	
 is	
 added	
 to	
 the	
 dic*onary,	
 and	
 a	
 new	

pos*ngs	
 list	
 is	
 created	
 (line	
 6).	
 The	
 call	
 in	
 line	
 7	
 returns	
 this	

pos*ngs	
 list	
 for	
 subsequent	
 occurrences	
 of	
 the	
 term.	
 	

Wednesday	
 8	
 May	
 19	
 30	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

SPIMI:	
 Process	

§  A	
 difference	
 between	
 BSBI	
 and	
 SPIMI	
 is	
 that	
 SPIMI	
 adds	
 a	
 pos*ng	
 directly	

to	
 its	
 pos*ngs	
 list	
 (line	
 10).	
 	

§  Instead	
 of	
 first	
 collec*ng	
 all	
 termID–docID	
 pairs	
 and	
 then	
 sor*ng	
 them	

(as	
 we	
 did	
 in	
 BSBI),	
 each	
 pos*ngs	
 list	
 is	
 dynamic	
 (i.e.,	
 its	
 size	
 is	

adjusted	
 as	
 it	
 grows)	
 and	
 it	
 is	
 immediately	
 available	
 to	
 collect	
 pos*ngs.	
 	

§  This	
 has	
 two	
 advantages:	
 	

§  It	
 is	
 faster	
 and	
 it	
 saves	
 memory	
 because	
 we	
 keep	
 track	
 of	
 the	
 term	
 a	

pos*ngs	
 list	
 belongs	
 to,	
 so	
 the	
 termIDs	
 of	
 pos*ngs	
 need	
 not	
 be	
 stored.	
 	

§  As	
 a	
 result,	
 the	
 blocks	
 that	
 individual	
 calls	
 of	
 SPIMI-­‐INVERT	
 process	
 are	

much	
 larger	
 and	
 the	
 index	
 construc*on	
 process	
 as	
 a	
 whole	
 is	
 more	

efficient.	
 	

§  Short	
 spaced	
 pos*ngs	
 list	
 ini*ally	
 and	
 double	
 the	
 space	
 each	
 *me	
 it	
 is	
 full	

(lines	
 8–9).	
 	

§  Some	
 memory	
 is	
 wasted.	
 However,	
 the	
 overall	
 memory	
 requirements	

for	
 the	
 dynamically	
 constructed	
 index	
 are	
 s*ll	
 lower	
 than	
 in	
 BSBI.	
 	

Wednesday	
 8	
 May	
 19	
 31	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

SPIMI:	
 Process	

§  When	
 memory	
 has	
 been	
 exhausted,	
 we	
 write	
 the	
 index	
 of	
 the	
 block	

(which	
 consists	
 of	
 the	
 dic*onary	
 and	
 the	
 pos*ngs	
 lists)	
 to	
 disk	
 (line	
 12).	
 	

§  We	
 have	
 to	
 sort	
 the	
 terms	
 (line	
 11)	
 before	
 doing	
 this	
 because	
 we	
 want	
 to	

write	
 pos*ngs	
 lists	
 in	
 lexicographic	
 order	
 to	
 facilitate	
 the	
 final	
 merging	

step.	
 	

§  Each	
 call	
 of	
 SPIMI-­‐INVERT	
 writes	
 a	
 block	
 to	
 disk,	
 just	
 as	
 in	
 BSBI.	
 	

§  The	
 last	
 step	
 of	
 SPIMI	
 (corresponding	
 to	
 line	
 7	
 in	
 Figure	
 4.2;	
 not	
 shown	
 in	

algorithm	
 here)	
 is	
 then	
 to	
 merge	
 the	
 blocks	
 into	
 the	
 final	
 inverted	
 index.	
 	

§  The	
 *me	
 complexity	
 of	
 SPIMI	
 is	
 Θ(T).	
 	

§  Both	
 the	
 pos*ngs	
 and	
 the	
 dic*onary	
 terms	
 can	
 be	
 stored	
 compactly	
 on	

disk	
 if	
 we	
 employ	
 compression.	
 Compression	
 increases	
 the	
 efficiency	

further	
 because	
 we	
 can	
 process	
 even	
 larger	
 blocks,	
 and	
 because	
 the	

individual	
 blocks	
 require	
 less	
 space	
 on	
 disk	
 (Sec*on	
 4.7).	
 	

Wednesday	
 8	
 May	
 19	
 32	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Distributed	
 indexing	

§  Used	
 for	
 mainly	
 web-­‐scale	
 indexing:	

§  must	
 use	
 a	
 distributed	
 compu*ng	
 cluster	

§  Individual	
 machines	
 are	
 fault-­‐prone	

§  Can	
 unpredictably	
 slow	
 down	
 or	
 fail	

§  How	
 do	
 we	
 exploit	
 such	
 a	
 pool	
 of	
 machines?	

§  By	
 construc*ng	
 distributed	
 index	
 that	
 is	
 par**oned	
 across	

several	
 machines.	
 	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Web	
 search	
 engine	
 data	
 centers	

§  Web	
 search	
 data	
 centers	
 (Google,	
 Bing,	
 Baidu)	

mainly	
 contain	
 commodity	
 machines.	

§  Data	
 centers	
 are	
 distributed	
 around	
 the	
 world.	

§  Es*mate:	
 Google	
 ~1	
 million	
 servers,	
 3	
 million	

processors/cores	
 (Gartner	
 2007)	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Massive	
 data	
 centers	

§  If	
 in	
 a	
 non-­‐fault-­‐tolerant	
 system	
 with	
 1000	
 nodes,	

each	
 node	
 has	
 99.9%	
 up*me,	
 what	
 is	
 the	
 up*me	
 of	

the	
 system?	

§  Answer:	
 37%	
 =	
 (99.9%)1000	
 	

§  *Assump*on:	
 System	
 is	
 up	
 if	
 all	
 nodes	
 are	
 up.	

§  Suppose	
 a	
 server	
 will	
 fail	
 a_er	
 3	
 years.	
 For	
 an	

installa*on	
 of	
 1	
 million	
 servers,	
 what	
 is	
 the	
 interval	

between	
 machine	
 failures?	

§  <2	
 minutes	
 ((3*365*24*60)/1000000	
 =	
 1.5768)	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Distributed	
 indexing	

§  Maintain	
 a	
 master	
 machine	
 direc*ng	
 the	
 indexing	

job.	

§  Break	
 up	
 indexing	
 into	
 sets	
 of	
 (parallel)	
 tasks.	

§  Master	
 machine	
 assigns	
 each	
 task	
 to	
 an	
 idle	
 machine	

from	
 a	
 pool.	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Parallel	
 tasks	

§  We	
 will	
 use	
 two	
 sets	
 of	
 parallel	
 tasks	

§  Parsers	

§  Inverters	

§  Break	
 the	
 input	
 document	
 collec*on	
 into	
 splits	

§  Each	
 split	
 is	
 a	
 subset	
 of	
 documents	
 (corresponding	
 to	

blocks	
 in	
 BSBI/SPIMI)	

§  First,	
 the	
 input	
 data,	
 in	
 our	
 case	
 a	
 collec*on	
 of	
 web	
 pages,	
 are	
 split	
 into	
 n	
 splits	

where	
 the	
 size	
 of	
 the	
 split	
 is	
 chosen	
 to	
 ensure	
 that	
 the	
 work	
 can	
 be	
 distributed	

evenly	
 (chunks	
 should	
 not	
 be	
 too	
 large)	
 and	
 efficiently	
 (the	
 total	
 number	
 of	
 chunks	

we	
 need	
 to	
 manage	
 should	
 not	
 be	
 too	
 large);	
 16	
 or	
 64	
 MB	
 are	
 good	
 sizes	
 in	

distributed	
 indexing.	
 	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Parsers	

§  Master	
 assigns	
 a	
 split	
 to	
 an	
 idle	
 parser	
 machine	

§  Parser	
 reads	
 a	
 document	
 at	
 a	
 *me	
 and	
 emits	
 (term,	

docID)	
 pairs	

§  Parser	
 writes	
 pairs	
 into	
 j	
 par**ons	

§  Each	
 par**on	
 is	
 for	
 a	
 range	
 of	
 terms’	
 first	
 leners	

§  (e.g.,	
 a-­‐f,	
 g-­‐p,	
 q-­‐z)	
 –	
 here	
 j	
 =	
 3.	

§  Splits	
 are	
 not	
 pre-­‐assigned	
 to	
 machines,	
 but	
 are	
 instead	
 assigned	
 by	
 the	
 master	

node	
 on	
 an	
 ongoing	
 basis:	
 As	
 a	
 machine	
 finishes	
 processing	
 one	
 split,	
 it	
 is	
 assigned	

the	
 next	
 one.	
 If	
 a	
 machine	
 dies	
 or	
 becomes	
 a	
 laggard	
 (too	
 slow)	
 due	
 to	
 hardware	

problems,	
 the	
 split	
 it	
 is	
 working	
 on	
 is	
 simply	
 reassigned	
 to	
 another	
 machine.	
 	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Inverters	

§  An	
 inverter	
 collects	
 all	
 (term,docID)	
 pairs	
 (=	
 pos*ngs)	

for	
 one	
 term-­‐par**on	
 e.g.	
 for	
 a-­‐f.	

§  Sorts	
 and	
 writes	
 to	
 pos*ngs	
 lists.	

§  Each	
 term	
 par**on	
 (corresponding	
 to	
 r	
 segment	
 files,	
 one	
 on	
 each	
 parser)	
 is	

processed	
 by	
 one	
 inverter.	
 Finally,	
 the	
 list	
 of	
 values	
 (docIDs)	
 is	
 sorted	
 for	
 each	
 key	

(term)	
 and	
 wrinen	
 to	
 the	
 final	
 sorted	
 pos*ngs	
 list	
 (“pos*ngs”	
 in	
 the	
 figure).	
 This	

completes	
 the	
 construc*on	
 of	
 the	
 inverted	
 index.	
 	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Data	
 flow	
 	

splits

Parser

Parser

Parser

Master

a-f g-p q-z

a-f g-p q-z

a-f g-p q-z

Inverter

Inverter

Inverter

Postings

a-f

g-p

q-z

assign assign

Map
phase

Segment files Reduce
phase

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

MapReduce	

§  The	
 index	
 construc*on	
 algorithm	
 we	
 just	
 described	
 is	

an	
 instance	
 of	
 MapReduce.	

§  MapReduce	
 (Dean	
 and	
 Ghemawat	
 2004)	
 is	
 a	
 robust	

and	
 conceptually	
 simple	
 framework	
 for	
 distributed	

compu*ng	
 …	

§  …	
 without	
 having	
 to	
 write	
 code	
 for	
 the	
 distribu*on	

part.	

§  The	
 original	
 Google	
 indexing	
 system	
 consisted	
 of	
 a	

number	
 of	
 phases,	
 each	
 implemented	
 in	

MapReduce.	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

MapReduce	
 (General)	

§  To	
 minimize	
 write	
 *mes	
 before	
 inverters	
 reduce	
 the	

data,	
 each	
 parser	
 writes	
 its	
 segment	
 files	
 to	
 its	
 local	

disk.	
 	

§  In	
 the	
 reduce	
 phase,	
 the	
 master	
 communicates	
 to	
 an	

inverter	
 the	
 loca*ons	
 of	
 the	
 relevant	
 segment	
 files.	
 	

§  Each	
 segment	
 file	
 only	
 requires	
 one	
 sequen*al	
 read.	

This	
 setup	
 minimizes	
 the	
 amount	
 of	
 network	
 traffic	

needed	
 during	
 indexing.	
 	

§  The	
 same	
 machine	
 can	
 be	
 a	
 parser	
 in	
 the	
 map	
 phase	

and	
 an	
 inverter	
 in	
 the	
 reduce	
 phase.	
 	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Schema	
 for	
 index	
 construc(on	
 in	

MapReduce	

§  Schema	
 of	
 map	
 and	
 reduce	
 func(ons	

§  map:	
 input	
 →	
 list(k,	
 v)	
 	
 	
 	
 	
 	

§  reduce:	
 (k,list(v))	
 →	
 output	

§  Instan(a(on	
 of	
 the	
 schema	
 for	
 index	
 construc(on	

§  map:	
 collec*on	
 →	
 list(terms,	
 docIDs)	

§  reduce:	
 (<term1,	
 list(docIDs)>,	
 <term2,	
 list(docIDs)>,	
 …)	
 →	
 (pos*ngs	

list1,	
 pos*ngs	
 list2,	
 …)	

Sec. 4.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Example	
 for	
 index	
 construc(on	

§  Map:	

§  d2	
 :	
 C	
 died.	
 	
 	
 d1	
 :	
 C	
 came,	
 C	
 c’ed.	

§  →	
 (〈C,	
 d2	
 〉,	
 〈died,d2〉,	
 〈C,d1〉,	
 〈came,d1〉,	
 〈C,d1〉,	

〈c’ed,d1〉)	
 	

§  Reduce:	

§  (〈C,(d2,d1,d1)〉,〈died,(d2)〉,〈came,(d1)〉,〈c’ed,(d1)〉)	
 	

§  →	
 (〈C,(d1:2,	
 d2:1)〉,	
 〈died,(d2:1)〉,	
 〈came,(d1:1)〉,	
 〈c’ed,
(d1:1)〉)	
 	

44	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Exercise	
 4.3	

§  For	
 n	
 =	
 15	
 splits,	
 r	
 =	
 10	
 segments,	
 and	
 j	
 =	
 3	
 term	
 par**ons,	

how	
 long	
 would	
 distributed	
 index	
 crea*on	
 take	
 for	
 Reuters-­‐
RCV1	
 in	
 a	
 MapReduce	
 architecture?	
 Base	
 your	
 assump*ons	

about	
 cluster	
 machines	
 on	
 Table	
 4.1	
 &	
 4.2.	
 	

Wednesday	
 8	
 May	
 19	
 45	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Solu(on	

§  We	
 will	
 be	
 spli�ng	
 by	
 documents,	
 so	
 each	
 split	
 is	
 roughly:	

	
 split_documents	
 =	
 800000/15	
 =	
 53333	
 documents	

§  Each	
 split	
 size	
 is	
 about:	

§  Split_size	
 	
 =	
 	
 53333documents	
 x	
 200	
 token/document	
 x	
 6	
 bytes/token	

	
 	
 =	
 63999600	
 bytes	
 	
 ≈	
 61	
 MB	

§  MAP	
 phase:	
 	

§  Time	
 spent	
 by	
 a	
 machine	
 to	
 read	
 a	
 split:	

	
 Read_per_split	
 =	
 Split_size	
 x	
 (2	
 x	
 10-­‐8	
 sec/byte)	
 =	
 1.28	
 secs	

§  Time	
 spent	
 to	
 sort	
 this	
 split	
 (algorithm	
 complexity	
 is	
 O(nlog2n):	
 	

	
 Sort_*me	
 	
 =	
 split_documents	
 	
 x	
 200	
 token/document	
 x	
 	
 	

	
 log2	
 (split_documents	
 	
 x	
 200	
 token/document)	
 x	
 	
 	
 	
 (10-­‐8	
 sec/
byte)	
 =	
 2.49	
 secs	

	

Wednesday	
 8	
 May	
 19	
 46	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Solu(on	

§  Time	
 spent	
 by	
 a	
 machine	
 to	
 write	
 a	
 split:	

	
 Write_per_split	
 	
 =	
 split_documents	
 x	
 200	
 token/document	
 x	
 4.5	
 x	
 (2	

	
 	
 	
 x	
 10-­‐8	
 sec/byte)	
 =	
 0.96	
 secs	
 -­‐>	
 note:	
 here	
 tokens	
 	
 	

	
 are	
 without	
 spaces/punct.	
 already	

§  MAP	
 phase	
 is	
 read+sort+write:	
 	

=	
 1.28	
 secs	
 +	
 2.49	
 secs	
 +	
 0.96	
 secs	
 =	
 4.73	
 secs	

	

There	
 are	
 10	
 parser	
 machines	
 only	
 since	
 we	
 have	
 10	
 segments.	
 So	
 to	

parse	
 15	
 splits	
 we	
 will	
 need	
 to	
 do	
 2	
 passes	
 of	
 MAP.	

	

	
 Total	
 MAP	
 phase	
 =	
 4.73	
 x	
 2	
 =	
 9.46	
 secs	

§  REDUCE	
 phase	

Index	
 is	
 split	
 into	
 3	
 term	
 par**ons,	
 so	
 each	
 term	
 par**on	
 will	
 hold	

about	
 100000000/3	
 tokens	
 (this	
 is	
 a	
 rough	
 assump*on,	
 in	
 reality	
 term	

par**on	
 size	
 could	
 vary).	
 	

Wednesday	
 8	
 May	
 19	
 47	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Solu(on	

Each	
 Inverter	
 will	
 need	
 to	
 read	
 sort	
 and	
 write	
 this	
 amount	
 of	
 tokens.	

§  Term_	
 par**on_size	
 	
 =	
 100000000/3	
 tokens	
 x	
 4.5	
 bytes/tokens	
 	

	
 	
 	
 =	
 150000000	
 bytes	
 ≈	
 143	
 MB	
 	

§  Time_reading	
 	
 =	
 150000000	
 bytes	
 x	
 (2	
 x	
 10-­‐8	
 sec/byte)	
 =	
 3	
 secs	

§  Time	
 sor*ng	
 	
 =	
 100000000/3	
 tokens	
 x	
 log2	
 (100000000/3	
 tokens)	

	
 	
 x	
 (10-­‐8	
 sec/byte)	
 =	
 8.33	
 secs	

§  Time_wri*ng	
 	
 =	
 150000000	
 bytes	
 x	
 (2	
 x	
 10-­‐8	
 sec/byte)	
 =	
 3	
 secs	

§  Total	
 REDUCE	
 phase	
 =	
 	
 3	
 +	
 8.33	
 +	
 3	
 =	
 14.33	
 secs	

Total	
 (me	
 of	
 Distributed	
 Index	
 crea(on	
 =	
 9.46	
 secs	
 +	
 14.33	

secs	
 =	
 23.79	
 secs	

Wednesday	
 8	
 May	
 19	
 48	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Dynamic	
 indexing	

§  Up	
 to	
 now,	
 we	
 have	
 assumed	
 that	
 collec*ons	
 are	

sta*c.	
 They	
 rarely	
 are:	
 	

§  Documents	
 come	
 in	
 over	
 *me	
 and	
 need	
 to	
 be	
 inserted.	

§  Documents	
 are	
 deleted	
 and	
 modified.	

§  This	
 means	
 that	
 the	
 dic*onary	
 and	
 pos*ngs	
 lists	

have	
 to	
 be	
 modified:	

§  Pos*ngs	
 updates	
 for	
 terms	
 already	
 in	
 dic*onary	

§  New	
 terms	
 added	
 to	
 dic*onary	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Simplest	
 dynamic	
 approach	

§  Maintain	
 “big” main	
 index	

§  New	
 docs	
 go	
 into	
 “small” auxiliary	
 index	

§  Search	
 across	
 both,	
 merge	
 results	

§  Dele*ons	

§  Invalida*on	
 bit-­‐vector	
 for	
 deleted	
 docs	

§  Filter	
 docs	
 output	
 on	
 a	
 search	
 result	
 by	
 this	
 invalida*on	

bit-­‐vector	

§  Periodically,	
 re-­‐index	
 into	
 one	
 main	
 index	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Issues	
 with	
 main	
 and	
 auxiliary	
 indexes	

§  Problem	
 of	
 frequent	
 merges	
 –	
 poor	
 performance	

§  Actually:	

§  Merging	
 of	
 the	
 auxiliary	
 index	
 into	
 the	
 main	
 index	
 is	

efficient	
 if	
 we	
 keep	
 a	
 separate	
 file	
 for	
 each	
 pos*ngs	
 list.	

§  Merge	
 is	
 the	
 same	
 as	
 a	
 simple	
 append.	

§  But	
 then	
 we	
 would	
 need	
 a	
 lot	
 of	
 files	
 –	
 inefficient	
 for	
 OS.	

§  Assump*on	
 for	
 remaining	
 lecture:	
 The	
 index	
 is	
 one	
 big	
 file.	

§  In	
 reality:	
 Use	
 a	
 scheme	
 somewhere	
 in	
 between	
 (e.g.,	
 split	

very	
 large	
 pos*ngs	
 lists,	
 collect	
 pos*ngs	
 lists	
 of	
 length	
 1	
 in	

one	
 file	
 etc.)	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Logarithmic	
 merge	

§  Maintain	
 a	
 series	
 of	
 indexes,	
 each	
 twice	
 as	
 large	
 as	

the	
 previous	
 one	

§  At	
 any	
 *me,	
 some	
 of	
 these	
 powers	
 of	
 2	
 are	
 instan*ated	

§  Keep	
 smallest	
 (Z0)	
 in	
 memory	

§  Larger	
 ones	
 (I0,	
 I1,	
 …)	
 on	
 disk	

§  If	
 Z0	
 gets	
 too	
 big	
 (>	
 n),	
 write	
 to	
 disk	
 as	
 I0	
 	

§  or	
 merge	
 with	
 I0	
 (if	
 I0	
 already	
 exists)	
 as	
 Z1	

§  Either	
 write	
 merged	
 Z1	
 to	
 disk	
 as	
 I1	
 (if	
 no	
 I1)	

§  Or	
 merge	
 with	
 I1	
 to	
 form	
 Z2	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	
 Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Logarithmic	
 merge	

§  Overall	
 index	
 construc*on	
 *me	
 is	
 Θ(T	
 logT)	
 where	
 T	

is	
 total	
 number	
 of	
 pos*ngs.	
 	

§  We	
 trade	
 this	
 efficiency	
 gain	
 for	
 a	
 slow	
 down	
 of	

query	
 searching	
 process;	
 	

§  Due	
 to	
 complexity	
 of	
 dynamic	
 indexing,	
 some	
 large	

search	
 engines	
 do	
 not	
 construct	
 indexes	
 dynamically.	

Instead,	
 a	
 new	
 index	
 is	
 built	
 from	
 scratch	

periodically.	
 Query	
 processing	
 is	
 then	
 switched	
 to	

the	
 new	
 index	
 and	
 the	
 old	
 index	
 is	
 deleted.	
 	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Further	
 issues	
 with	
 mul(ple	
 indexes	

§  Collec*on-­‐wide	
 sta*s*cs	
 are	
 hard	
 to	
 maintain	
 e.g.,	

when	
 we	
 spoke	
 of	
 spell-­‐correc*on:	
 which	
 of	
 several	

corrected	
 alterna*ves	
 do	
 we	
 present	
 to	
 the	
 user?	

§  We	
 said,	
 pick	
 the	
 one	
 with	
 the	
 most	
 hits	

§  How	
 do	
 we	
 maintain	
 the	
 top	
 ones	
 with	
 mul*ple	

indexes	
 and	
 invalida*on	
 bit	
 vectors?	

§  One	
 possibility:	
 ignore	
 everything	
 but	
 the	
 main	
 index	
 for	

such	
 ordering.	

§  Will	
 see	
 more	
 such	
 sta*s*cs	
 used	
 in	
 results	
 ranking.	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Dynamic	
 indexing	
 at	
 search	
 engines	

§  All	
 the	
 large	
 search	
 engines	
 now	
 do	
 dynamic	

indexing	

§  Their	
 indices	
 have	
 frequent	
 incremental	
 changes	

§  News	
 items,	
 blogs,	
 new	
 topical	
 web	
 pages	

§  Sarah	
 Palin,	
 …	

§  But	
 (some*mes/typically)	
 they	
 also	
 periodically	

reconstruct	
 the	
 index	
 from	
 scratch	

§  Query	
 processing	
 is	
 then	
 switched	
 to	
 the	
 new	
 index,	
 and	

the	
 old	
 index	
 is	
 deleted	

Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Exercise	

Wednesday	
 8	
 May	
 19	
 57	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Solu(on	

Wednesday	
 8	
 May	
 19	
 58	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	
 Sec. 4.5

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Other	
 types	
 of	
 indexes	
 	

§  Sor*ng	
 algorithms	
 discussed	
 can	
 all	
 be	
 applied	
 to	

posi*onal	
 indexes.	
 	

§  In	
 ranked	
 retrieval,	
 pos*ngs	
 are	
 o_en	
 ordered	
 ac-­‐	

cording	
 to	
 weight	
 or	
 impact,	
 with	
 the	
 highest	

weighted	
 pos*ngs	
 occurring	
 first.	
 	

§  In	
 a	
 docID-­‐sorted	
 index,	
 new	
 documents	
 are	
 always	

inserted	
 at	
 the	
 end	
 of	
 pos*ngs	
 lists.	
 	

§  In	
 an	
 impact-­‐sorted	
 index	
 (will	
 study	
 next),	
 the	

inser*on	
 can	
 occur	
 anywhere,	
 thus	
 complica*ng	
 the	

update	
 of	
 the	
 inverted	
 index.	
 	

Wednesday	
 8	
 May	
 19	
 60	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Other	
 types	
 of	
 indexes	
 	

§  Security	
 is	
 an	
 important	
 considera*on	
 for	
 retrieval	

systems	
 in	
 corpora*ons.	
 	

§  User	
 authoriza*on	
 is	
 o_en	
 mediated	
 through	
 access	

control	
 lists	
 or	
 ACLs.	
 	

Wednesday	
 8	
 May	
 19	
 61	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Other	
 types	
 of	
 indexes	
 	

§  The	
 inverted	
 ACL	
 index	
 has,	
 for	
 each	
 user,	
 a	

“pos*ngs	
 list”	
 of	
 documents	
 they	
 can	
 access	
 –	
 the	

user’s	
 access	
 list.	
 	

§  Search	
 results	
 are	
 then	
 intersected	
 with	
 this	
 list.	

However,	
 such	
 an	
 index	
 is	
 difficult	
 to	
 maintain	
 when	

access	
 permissions	
 change.	
 	

§  User	
 membership	
 is	
 therefore	
 o_en	
 verified	
 by	

retrieving	
 access	
 informa*on	
 directly	
 from	
 the	
 file	

system	
 at	
 query	
 *me	
 –	
 even	
 though	
 this	
 slows	
 down	

retrieval.	
 	

Wednesday	
 8	
 May	
 19	
 62	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Assignment	
 #4(b)	

§  Exercise	
 4.6	
 	

§  Total	
 index	
 construc*on	
 *me	
 in	
 blocked	
 sort-­‐based	

indexing	
 is	
 broken	
 down	
 in	
 Ta-­‐	
 ble	
 4.3.	
 Fill	
 out	
 the	

*me	
 column	
 of	
 the	
 table	
 for	
 Reuters-­‐RCV1	
 assuming	

a	
 system	
 with	
 the	
 parameters	
 given	
 in	
 Table	
 4.1.	
 	

63	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Assignment	
 #4(c)	

§  Exercise	
 4.7	
 	

§  Repeat	
 Exercise	
 4.6	
 for	
 the	
 larger	
 collec*on	
 in	
 Table	

4.4.	
 Choose	
 a	
 block	
 size	
 that	
 is	
 realis*c	
 for	
 current	

technology	
 (remember	
 that	
 a	
 block	
 should	
 easily	
 fit	

into	
 main	
 memory).	
 How	
 many	
 blocks	
 do	
 you	
 need?	
 	

64	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Assignment	
 #4(d)	

§  Exercise	
 4.9	
 	

§  Assume	
 that	
 machines	
 in	
 MapReduce	
 have	
 100	
 GB	
 of	

disk	
 space	
 each.	
 Assume	
 fur-­‐	
 ther	
 that	
 the	
 pos*ngs	

list	
 of	
 the	
 term	
 the	
 has	
 a	
 size	
 of	
 200	
 GB.	
 Then	
 the	

MapReduce	
 algorithm	
 as	
 described	
 cannot	
 be	
 run	
 to	

construct	
 the	
 index.	
 How	
 would	
 you	
 modify	

MapReduce	
 so	
 that	
 it	
 can	
 handle	
 this	
 case?	
 	

65	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Ar(cles	
 and	
 sources	
 to	
 be	
 read	

§  Heinz	
 and	
 Zobel	
 (2003)	
 and	
 Zobel	
 and	
 Moffat	
 (2006)	

as	
 up-­‐do-­‐date,	
 in-­‐depth	
 treatments	
 of	
 index	

construc*on.	
 	

§  Dynamic	
 indexing	
 methods	
 are	
 discussed	
 in	
 Büncher	

et	
 al.	
 (2006)	
 and	
 Lester	
 et	
 al.	
 (2006).	
 	

§  Reuters’	
 resources	
 are	
 available	
 at	
 the	
 following	
 link:	

hnps://trec.nist.gov/data/reuters/reuters.html	

66	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Programming	
 Assignment	
 #4(e)	

§  Visit	
 the	
 link:	
 hnp://hadoop.apache.org/	

§  The	
 Apache	
 Hadoop	
 so_ware	
 library	
 is	
 a	
 framework	

that	
 allows	
 for	
 the	
 distributed	
 processing	
 of	
 large	

data	
 sets	
 across	
 clusters	
 of	
 computers	
 using	
 simple	

programming	
 models.	
 It	
 is	
 designed	
 to	
 scale	
 up	
 from	

single	
 servers	
 to	
 thousands	
 of	
 machines,	
 each	

offering	
 local	
 computa*on	
 and	
 storage.	

§  Take	
 any	
 collec*on	
 and	
 run	
 the	
 map	
 and	
 reduce	

phase	
 of	
 hadoop	
 to	
 make	
 an	
 index	
 with	
 pos*ngs	
 	

67	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Programming	
 Assignment	
 #4(f)	

§  Visit	
 the	
 link:	
 hnp://lucene.apache.org/	

§  The	
 Apache	
 LuceneTM	
 project	
 provides	
 Java-­‐based	

indexing	
 and	
 search	
 technology,	
 as	
 well	
 as	

spellchecking,	
 hit	
 highligh*ng	
 and	
 advanced	
 analysis/
tokeniza*on	
 capabili*es.	

§  Take	
 any	
 collec*on	
 and	
 run	
 the	
 logarithmic	
 merging	

of	
 Lucene	
 to	
 make	
 a	
 dynamic	
 index	

68	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

References	

§  Heinz,	
 Steffen,	
 and	
 Jus*n	
 Zobel.	
 2003.	
 Efficient	
 single-­‐pass	
 index	

construc*on	
 for	
 text	
 databases.	
 JASIST	
 54(8):713–729.	
 DOI:	
 dx.doi.org/
10.1002/asi.10268.	
 	

§  Zobel,	
 Jus*n,	
 and	
 Alistair	
 Moffat.	
 2006.	
 Inverted	
 files	
 for	
 text	
 search	

engines.	
 ACM	
 Compu)ng	
 Surveys	
 38(2).	
 	

§  Büncher,	
 Stefan,	
 Charles	
 L.	
 A.	
 Clarke,	
 and	
 Brad	
 Lushman.	
 2006.	
 Hybrid	

index	
 main-­‐	
 tenance	
 for	
 growing	
 text	
 collec*ons.	
 In	
 Proc.	
 SIGIR,	
 pp.	
 356–
363.	
 ACM	
 Press.	
 DOI:	
 doi.acm.org/10.1145/1148170.1148233.	
 	

§  Lester,	
 Nicholas,	
 Jus*n	
 Zobel,	
 and	
 Hugh	
 E.	
 Williams.	
 2006.	
 Efficient	
 online	

index	
 maintenance	
 for	
 con*guous	
 inverted	
 lists.	
 IP&M	
 42(4):916–933.	

DOI:	
 dx.doi.org/10.1016/j.ipm.2005.09.005.	
 	

69	

