Introduction to

Information Retrieval

Index Construction

Introduction to Information Retrieval

Plan

= Last lecture:
= Dictionary data structures

" Tolerant retrieval
= Wildcards
= Spell correction
= Soundex

= This time:

* |Index construction

$m

on

a-hu

\ 4

mace

madden

among —>

amortize

[

abandon

among

Introduction to Information Retrieval Ch. 4

Index construction

* How do we construct an index? (Previous study)

= What strategies can we use with limited main
memory? (Previous study)

Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Many design decisions in information retrieval are
based on the characteristics of hardware e.g. size of
main memory, disk and cache, read, write and other
operations.

= We begin by reviewing hardware basics

Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Access to data in memory is much faster than access
to data on disk.

= Disk seeks: No data is transferred from disk while the
disk head is being positioned.

"= Therefore: Transferring one large chunk of data from disk
to memory is faster than transferring many small chunks.

= Disk I/O is block-based: Reading and writing of entire
blocks (as opposed to smaller chunks).

= Block sizes: 8KB to 256 KB.

Introduction to Information Retrieval Sec. 4.1

Hardware basics

= Servers used in IR systems now typically have several
GB of main memory, sometimes tens of GB.

= Available disk space is several (2—3) orders of
magnitude larger.

= Fault tolerance is very expensive: It’ s much cheaper
to use many regular machines rather than one fault

tolerant machine.

Introduction to Information Retrieval Sec. 4.1

Hardware assumptions for this lecture

» Table 4.1 Typical system parameters in 2007. The seek time is the time needed
to position the disk head in a new position. The transfer time per byte is the rate of
transfer from disk to memory when the head is in the right position.

Symbol Statistic Value
s average seek time 5ms=5x10" s
b transfer time per byte 0.02us=2x10"8s
processor’s clock rate 107 s~
p lowlevel operation
(e.g., compare & swap aword) 0.01 us =10"%s
size of main memory several GB

size of disk space 1 TB or more

Introduction to Information Retrieval Sec. 4.2

RCV1: Our collection for this lecture

= Shakespeare’ s collected works definitely aren’ t
large enough for demonstrating many of the points
in this course.

= The collection we’ Il use isn’ t really large enough

either, but it’ s publicly available and is at least a
more plausible example.

= As an example for applying scalable index
construction algorithms, we will use the Reuters
RCV1 collection.

* This is one year of Reuters newswire (part of 1995
and 1996)

Introduction to Information Retrieval Sec. 4.2

A Reuters RCV1 document

REUTERS B

You are here: Home > News > Science > Article

Gotoa Section: U.S. International Business Markets Politics Entertainment Technology Sports Oddly Enouc

Extreme conditions create rare Antarctic clouds

Tue Aug 1, 2006 3:20am ET

Email This Article Print This Article | Reprints

[-] Text [+
SYDNEY (Reuters) - Rare, mother-of-pearl colored clouds
caused by extreme weather conditions above Antarctica are a

possible indication of global warming, Australian scientists said on
Tuesday.

Known as nacreous clouds, the spectacular formations showing delicate

wisps of colors were photographed in the sky over an Australian
meteorological base at Mawson Station on July 25.

Introduction to Information Retrieval Sec. 4.2

Reuters RCV1 statistics

» Table 4.2 Collection statistics for Reuters-RCV1. Values are rounded for the com-
putations in this book. The unrounded values are: 806,791 documents, 222 tokens
per document, 391,523 (distinct) terms, 6.04 bytes per token with spaces and punc-
tuation, 4.5 bytes per token without spaces and punctuation, 7.5 bytes per term, and
96,969,056 tokens. The numbers in this table correspond to the third line (“case fold-
ing”) in Table 5.1 (page 87).

Symbol Statistic Value
N documents 800,000
Lave avg. # tokens per document 200
M terms 400,000
avg. # bytes per token (incl. spaces/punct.) 6
avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term 7.5

T tokens 100,000,000

Introduction to Information Retrieval Sec. 4.2

O
o
(9]
H

Term

Recall IR 1 index construction .,

enact
julius
= Documents are parsed to extract words and these paesar
are saved with the Document ID. was
killed
)
the
capitol
brutus
killed
me
DOC 1 DOC 2 ﬁ so
let
it
be

| did enact Julius So let it be with with
Caesar | was killed Caesar. The noble caesar

the

I" the Capitol; Brutus hath told you noble

. brutus
Brutus killed me. Caesar was ambitious hath

you
caesar
was
ambitious

NNNNMMNMNMMMNMNMNMNMNMNMMNMNBMNMNN_R,R a2 2 adaadaadaadaa

Introduction to Information Retrieval Sec. 4.2

K Term Doc # Term Doc #

ey Step | 1 ambitious 2
did 1 be 2_

enact 1 brutus 1

julius 1 brutus 2

= After all documents have been caesar : capitol :

parsed, the inverted file is was 1 caesar 2

killed 1 caesar 2

sorted by terms. i 1 did 1

the 1 enact 1

capitol 1 hath 1

4 brutus 1 | 1

killed 1 I 1

f h H me 1 i 1

We focus on this sort step. so 2 i 9

We have 100M items to sort. . 2 =P o 1

be 2 killed 1

with 2 let 2

caesar 2 me 1

the 2 noble 2

noble 2 SO 2

brutus 2 the 1

hath 2 the 2

told 2 told 2

you 2 you 2

caesar 2 was 1

was 2 was 2

ambitious 2 with 2

Introduction to Information Retrieval Sec. 4.2

Scaling index construction

" |n-memory index construction does not scale
= Can’ t stuff entire collection into memory, sort, then write
back
= How can we construct an index for very large
collections?

= Taking into account the hardware constraints we just
learned about .. .memory, disk, speed, etc.

Introduction to Information Retrieval Sec. 4.2

Sort based index construction

= As we build the index, we parse docs one at a time.

= While building the index, we cannot easily exploit
compression tricks (you can, but much more complex)

* The final postings for any term are incomplete until the end.

= At 12 bytes per non-positional postings entry (term, doc,
freq), demands a lot of space for large collections.

= T=100,000,000 in the case of RCV1], so ... we can do this in
memory in 2009, but typical collections are much larger. E.g.,
the New York Times provides an index of >150 years of
newswire

= Thus: We need to store intermediate results on disk.

Introduction to Information Retrieval Sec. 4.2

Sort in “disk” or “memory”

= Can we use the previous index construction
algorithm (simple, positional index, or with skip
pointers) for larger collections, but by using disk
instead of memory?

= No: Sorting T = 100,000,000 records on disk is too
slow — too many disk seeks.

= We need an external sorting algorithm.

Introduction to Information Retrieval Sec. 4.2

Bottleneck

= Parse and build postings entries one doc at a time

* Now sort postings entries by term (then by doc
within each term)

* Doing this with random disk seeks would be too slow
— must sort T=100M records

If every comparison took 2 disk seeks, and N items could be
sorted with N log,N comparisons, how long would this take?

BSBI: Blocked sort-based Indexing

(Sorting with fewer disk seeks)

= 12-byte (4+4+4) records (term, doc, freq).

"= These are generated as we parse docs.

= Must now sort 100M such 12-byte records by term.
= Define a Block|™ 10M such records

= Can easily ﬁ%uple into memory.
= Will have| 10 such blocks to start with.

= Basic idea of algorithm:

= Accumulate postings for each block, sort, write to disk.
= Then merge the blocks into one long sorted order.

Introduction to Information Retrieval Sec. 4.2

Sorting and merging of terms

postings lists
to be merged

brutus d1,d3,d6,d7

brutus d1,d3 brutus d6,d7 caesar dl1,d2,d4,d8,d9

caesar dl1,d2,d4 caesar d8,d9 - julius d10 merged
noble d5 julius d10 killed d8 postings lists
with d1,d2,d3,d5 killed d8 noble d5

with d1,d2,d3,d5

AN /
e

» Figure4.3 Merging in blocked sort-based indexing. Two blocks (“postings lists to
be merged”) are loaded from disk into memory, merged in memory (“merged post-
ings lists”) and written back to disk. We show terms instead of termIDs for better
readability.

Introduction to Information Retrieval Sec. 4.2

Sorting 10 blocks of 10M records

= First, read each block and sort within:
= Quicksort takes 2N In N expected steps (if is on disk)
" |n our case 2x(10M In 10M) steps

= Exercise: estimate total time to read each block from
disk and quicksort it.

= 10 times this estimate — gives us 10 sorted runs of 10M
records each.

= Done straightforwardly, need 2 copies of data on disk

= But can optimize this

Introduction to Information Retrieval Sec. 4.2

Algorithm description

= The algorithm parses documents into termID—docID pairs and
accumulates the pairs in memory until a block of a fixed size is
full (PARSENEXTBLOCK).

* We choose the block size to fit comfortably into memory
to permit a fast in-memory sort.

= The block is then inverted and written to disk.

= |nversion involves two steps. First, we sort the termID-
docID pairs. Next, we collect all termID—docID pairs with
the same termI|D into a postings list, where a posting is
simply a doclD.

* The result, an inverted index for the block we have just
read, is then written to disk.

Introduction to Information Retrieval Sec. 4.2

BSBINDEXCONSTRUCTION()

1 n<0

2 while (all documents have not been processed)
3 don+—n+1

4 block < PARSENEXTBLOCK()

5 BSBI-INVERT(block)

6 WRITEBLOCKTODISK(block, fp)

7 MERGEBLOCKS(f1,.. ., fn; fmerged)

Introduction to Information Retrieval Sec. 4.2

How to merge the sorted runs?

" To do the merging, open all block files simultaneously, and
maintain small read buffers for the ten blocks we are reading.

= A write buffer for the final merged index we are writing.

= |n each iteration, we select the lowest termID that has not
been processed yet using a priority queue or a similar data
structure.

= All postings lists for this termID are read and merged, and the
merged list is written back to disk.

= Each read buffer is refilled from its file when necessary.

Introduction to Information Retrieval Sec. 4.3

Remaining problem with BSBI

= Qur assumption was to keep the dictionary in memory.

* We need the dictionary (which grows dynamically) in order to
implement a term to termID mapping (BSBI).

= Actually, we could work with term,docID postings (SPIMI)
instead of termID,docID postings . ..

= . ..butthen intermediate files become very large. (We would

end up with a scalable, but very slow index construction
method.)

Introduction to Information Retrieval

Class Exercise

= Exercise 4.1

If we need T log T comparisons (where T is the
number of termID—docID pairs) and 2 two disk seeks
for each comparison, how much time would index
construction for Reuters-RCV1 take if we used disk
instead of memory for storage and an unoptimized
sorting algorithm (i.e., not an external sorting
algorithm)? Use the system parameters in Table 4.1.

Introduction to Information Retrieval

Solution

—Disk seek time = 5x103 s
2 x (5x1073) seconds per comparison
Transfer time = 2 x 108 s per byte
Low level operations = 10 seconds

—How long would it take to make T(log,T)
comparisons with 2 disk seeks per comparison?

=T(log,T) x 2(5x103s)
...consider transfer time and any low level operations

—0r see on the next slide

Introduction to Information Retrieval

Solution #2

= 100,000,000 records
Nlog,(N) is = 2,657,542,475.91 comparisons

2 disk seeks per comparison =(2,657,542,475.91 x 0.005) =
13,287,712.38 seconds x 2

= 26,575,424.76 seconds
=442,923.75 minutes
=7,382.06 hours

= 307.59 days

= 84% of a year

= 1% of your life

26

Introduction to Information Retrieval

Homework # 4 (a)

= Exercise 4.2 [*x] How would you create the dictionary
in blocked sort-based indexing on the fly to avoid an
extra pass through the data?

Introduction to Information Retrieval Sec. 4.3

SPIMI: Single-pass in-memory indexing

= Keyidea 1: Generate separate dictionaries for each
block — no need to maintain term-termID mapping
across blocks.

= Keyidea 2: Don tsort. Accumulate postings in
postings lists as they occur.

= With these two ideas we can generate a complete
inverted index for each block.

" These separate indexes can then be merged into one
big index.

Introduction to Information Retrieval Sec. 4.3

SPIMI-Invert

SPIMI-INVERT(token_stream)
1 output_file = NEWFILE()
dictionary = NEWHASH()
while (free memory available)
do token < next(token_stream)
if term(token) ¢ dictionary
then postings_list = ADD'TODICTIONARY (dictionary, term(token))
else postings_list = GETPOSTINGSLIST(dictionary, term(token))
if full(postings_list)
9 then postings_list = DOUBLEPOSTINGSLIST(dictionary, term(token))
10 ADDTOPOSTINGSLIST(postings_list, docID(token))
11 sorted_terms < SORTTERMS(dictionary)
12 WRITEBLOCKTODISK(sorted_terms, dictionary, output_file)
13 return output_file

O ~NO O & WD

= Merging of blocks is analogous to BSBI.

Introduction to Information Retrieval

SPIMI: Process

= SPIMI can index collections of any size as long as there is
enough disk space available.

= The SPIMI algorithm is shown earlier. The part of the

algorithm that parses documents and turns them into a
stream of term—doclD pairs, which we call tokens here, has
been omitted.

= SPIMI-INVERT is called repeatedly on the token stream until
the entire collection has been processed.

= Tokens are processed one by one (line 4). When a term occurs
for the first time, it is added to the dictionary, and a new
postings list is created (line 6). The call in line 7 returns this
postings list for subsequent occurrences of the term.

Wednesday 8 May 19 30

Introduction to Information Retrieval

SPIMI: Process

= Adifference between BSBI and SPIMI is that SPIMI adds a posting directly
to its postings list (line 10).

= |nstead of first collecting all termID—doclID pairs and then sorting them
(as we did in BSBI), each postings list is dynamic (i.e., its size is
adjusted as it grows) and it is immediately available to collect postings.

= This has two advantages:

= |tis faster and it saves memory because we keep track of the term a
postings list belongs to, so the termlIDs of postings need not be stored.

= As aresult, the blocks that individual calls of SPIMI-INVERT process are
much larger and the index construction process as a whole is more
efficient.

= Short spaced postings list initially and double the space each time it is full
(lines 8-9).

= Some memory is wasted. However, the overall memory requirements

for the dynamically constructed index are still lower than in BSBI.
Wednesday 8 May 19 31

Introduction to Information Retrieval

SPIMI: Process

= When memory has been exhausted, we write the index of the block
(which consists of the dictionary and the postings lists) to disk (line 12).

= We have to sort the terms (line 11) before doing this because we want to
write postings lists in lexicographic order to facilitate the final merging
step.

= Each call of SPIMI-INVERT writes a block to disk, just as in BSBI.

= The last step of SPIMI (corresponding to line 7 in Figure 4.2; not shown in
algorithm here) is then to merge the blocks into the final inverted index.

= The time complexity of SPIMI is O(T).

= Both the postings and the dictionary terms can be stored compactly on
disk if we employ compression. Compression increases the efficiency
further because we can process even larger blocks, and because the
individual blocks require less space on disk (Section 4.7).

Wednesday 8 May 19 32

Introduction to Information Retrieval Sec. 4.4

Distributed indexing

= Used for mainly web-scale indexing:
" must use a distributed computing cluster

* |ndividual machines are fault-prone
= Can unpredictably slow down or fail

= How do we exploit such a pool of machines?

= By constructing distributed index that is partitioned across
several machines.

Introduction to Information Retrieval Sec. 4.4

Web search engine data centers

= Web search data centers (Google, Bing, Baidu)
mainly contain commodity machines.

= Data centers are distributed around the world.

= Estimate: Google ~1 million servers, 3 million
processors/cores (Gartner 2007)

Introduction to Information Retrieval Sec. 4.4

Massive data centers

= |fin a non-fault-tolerant system with 1000 nodes,
each node has 99.9% uptime, what is the uptime of
the system?

= Answer: 37% = (99.9%)1000
= *Assumption: System is up if all nodes are up.

= Suppose a server will fail after 3 years. For an

installation of 1 million servers, what is the interval
between machine failures?

= <2 minutes ((3*365*%24*60)/1000000 = 1.5768)

Introduction to Information Retrieval Sec. 4.4

Distributed indexing

= Maintain a master machine directing the indexing
job.
" Break up indexing into sets of (parallel) tasks.

= Master machine assigns each task to an idle machine
from a pool.

Introduction to Information Retrieval Sec. 4.4

Parallel tasks

= We will use two sets of parallel tasks
= Parsers
= |nverters

= Break the input document collection into splits

= Each split is a subset of documents (corresponding to
blocks in BSBI/SPIMI)

= First, the input data, in our case a collection of web pages, are split into n splits
where the size of the split is chosen to ensure that the work can be distributed
evenly (chunks should not be too large) and efficiently (the total number of chunks
we need to manage should not be too large); 16 or 64 MB are good sizes in
distributed indexing.

Introduction to Information Retrieval Sec. 4.4

Parsers

= Master assigns a split to an idle parser machine

" Parser reads a document at a time and emits (term,
doclD) pairs

= Parser writes pairs into j partitions
= Each partition is for a range of terms’ first letters
" (e.g., a-f, g-p, g-z) — herej = 3.

= Splits are not pre-assigned to machines, but are instead assigned by the master
node on an ongoing basis: As a machine finishes processing one split, it is assigned
the next one. If a machine dies or becomes a laggard (too slow) due to hardware
problems, the split it is working on is simply reassigned to another machine.

Introduction to Information Retrieval Sec. 4.4

Inverters

= An inverter collects all (term,doclID) pairs (= postings)
for one term-partition e.g. for a-f.

= Sorts and writes to postings lists.

= Each term partition (corresponding to r segment files, one on each parser) is
processed by one inverter. Finally, the list of values (doclDs) is sorted for each key
(term) and written to the final sorted postings list (“postings” in the figure). This
completes the construction of the inverted index.

Introduction to Information Retrieval Sec. 4.4

Data flow
afffg,ﬂ~f*’[MaSter}‘"“““*~~~~4-7§.§_’;g\’i’_“ Postings
a-f g-p|q-z E
| al.f g;p q-Z 0/3
spillts o f gg_p 0-2 SE
gf?gse Segment files gleqzll;ge

Introduction to Information Retrieval Sec. 4.4

MapReduce

* The index construction algorithm we just described is
an instance of MapReduce.

* MapReduce (Dean and Ghemawat 2004) is a robust
and conceptually simple framework for distributed
computing ...

= ... without having to write code for the distribution
part.

" The original Google indexing system consisted of a
number of phases, each implemented in
MapReduce.

Introduction to Information Retrieval Sec. 4.4

MapReduce (General)

" To minimize write times before inverters reduce the
data, each parser writes its segment files to its local

disk.

" |n the reduce phase, the master communicates to an
inverter the locations of the relevant segment files.

= Each segment file only requires one sequential read.

This setup minimizes the amount of network traffic
needed during indexing.

* The same machine can be a parser in the map phase
and an inverter in the reduce phase.

Schema for index construction in

MapReduce

= Schema of map and reduce functions
= map: input = list(k, v)
= reduce: (k,list(v)) > output

= |nstantiation of the schema for index construction
= map: collection = list(terms, doclIDs)

= reduce: (<terml, list(doclDs)>, <term?2, list(docIDs)>, ...) & (postings
list1, postings list2, ...)

Introduction to Information Retrieval

Example for index construction

= Map:
= d2: Cdied. d1l:Ccame, Cc ed.

= S5 (C, d2), {died,d2), {C,d1), {came,d1), {C,d1),
(c’ed,d1))

= Reduce:
= ({C,(d2,d1,d1)),{died,(d2)),{came,(d1)),{c’ed,(d1)))

= > ({C,(d1:2, d2:1)), {died,(d2:1)), {came,(d1:1)), {c’ed,
(d1:1)))

44

Introduction to Information Retrieval

Exercise 4.3

" Forn=15splits, r =10 segments, and j = 3 term partitions,
how long would distributed index creation take for Reuters-
RCV1 in a MapReduce architecture? Base your assumptions
about cluster machines on Table 4.1 & 4.2.

» Table 4.1 Typical system parameters in 2007. The seek time is the time needed
to position the disk head in a new position. The transfer time per byte is the rate of » Table 4.2 Collection statistics for Reuters-RCV1. Values are rounded for the com-

. . . fee putations in this book. The unrounded values are: 806,791 documents, 222 tokens
transfer from disk to memory when the head is in the right position. per document, 391,523 (distinct) terms, 6.04 bytes per token with spaces and punc-

SymbOI Statistic Value tuation, 4.5 bytes per token without spaces and punctuation, 7.5 bytes per term, and
s average seek time 5ms =5 x 10_3 S 96,969,056 tokens. The numbers in this table correspond to the third line (“case fold-
b transfer time per byte 0.02 us =2 x 10-8g ing")inTable5.1 (page 87).
s clock rate 10° 51 Symbol Statistic Value
PTOCESSOr's cloc! N documents 800,000
p lowlevel operation Lave avg. # tokens per document 200
(e.g., compare & swap aword) 0.01 us =1078s M terms 400,000
size of main memory several GB avg. # bytes per token (incl. spaces/punct.) 6
size of disk space 1 TB or more avg. # bytes per token (without spaces/punct.) 4.5
avg. # bytes per term 7.5
T tokens 100,000,000

Wednesday 8 May 19 45

Introduction to Information Retrieval

Solution

= We will be splitting by documents, so each split is roughly:
split_documents = 800000/15 = 53333 documents

= Each split size is about:

= Split_size = 53333documents x 200 token/document x 6 bytes/token
= 63999600 bytes = 61 MB

= MAP phase:

= Time spent by a machine to read a split:
Read_per_split = Split_size x (2 x 108 sec/byte) = 1.28 secs

= Time spent to sort this split (algorithm complexity is O(nlog,n):
Sort_time = split_documents x 200 token/document x

log, (split_documents x 200 token/document) x (10 sec/
byte) = 2.49 secs

Wednesday 8 May 19 46

Introduction to Information Retrieval

Solution

= Time spent by a machine to write a split:
Write_per_split = split_documents x 200 token/document x 4.5 x (2
x 108 sec/byte) = 0.96 secs -> note: here tokens
are without spaces/punct. already

= MAP phase is read+sort+write:
=1.28 secs + 2.49 secs + 0.96 secs = 4.73 secs

There are 10 parser machines only since we have 10 segments. So to
parse 15 splits we will need to do 2 passes of MAP.

Total MAP phase =4.73 x 2 =9.46 secs
= REDUCE phase

Index is split into 3 term partitions, so each term partition will hold
about 100000000/3 tokens (this is a rough assumption, in reality term

partition size could vary).
Wednesday 8 May 19 47

Introduction to Information Retrieval

Solution

Each Inverter will need to read sort and write this amount of tokens.

= Term_ partition_size = 100000000/3 tokens x 4.5 bytes/tokens
= 150000000 bytes = 143 MB

Time_reading = 150000000 bytes x (2 x 10 sec/byte) = 3 secs

Time sorting = 100000000/3 tokens x log, (100000000/3 tokens)
X (108 sec/byte) = 8.33 secs

Time_writing = 150000000 bytes x (2 x 108 sec/byte) = 3 secs
Total REDUCE phase = 3 + 8.33 + 3 =14.33 secs

Total time of Distributed Index creation = 9.46 secs + 14.33
secs = 23.79 secs

Wednesday 8 May 19 48

Introduction to Information Retrieval Sec. 4.5

Dynamic indexing

= Up to now, we have assumed that collections are
static. They rarely are:
= Documents come in over time and need to be inserted.
* Documents are deleted and modified.

* This means that the dictionary and postings lists
have to be modified:

= Postings updates for terms already in dictionary
= New terms added to dictionary

Introduction to Information Retrieval Sec. 4.5

Simplest dynamic approach

= Maintain “big’ main index
= New docs go into “small” auxiliary index
= Search across both, merge results

= Deletions
= |nvalidation bit-vector for deleted docs

= Filter docs output on a search result by this invalidation
bit-vector

= Periodically, re-index into one main index

Introduction to Information Retrieval Sec. 4.5

Issues with main and auxiliary indexes

" Problem of frequent merges — poor performance
= Actually:

= Merging of the auxiliary index into the main index is
efficient if we keep a separate file for each postings list.

= Merge is the same as a simple append.
= But then we would need a lot of files — inefficient for OS.

= Assumption for remaining lecture: The index is one big file.

" |n reality: Use a scheme somewhere in between (e.g., split
very large postings lists, collect postings lists of length 1 in
one file etc.)

Introduction to Information Retrieval Sec. 4.5

Logarithmic merge

= Maintain a series of indexes, each twice as large as
the previous one

= At any time, some of these powers of 2 are instantiated
= Keep smallest (Z,) in memory
= Larger ones (l,, I, ...) on disk
= |f Z, gets too big (> n), write to disk as |,
= or merge with |, (if |, already exists) as Z,
= Either write merged Z, to disk as I, (if no |,)
= Or merge with |, to form Z,

Introduction to Information Retrieval Sec. 4.5

LMERGEADDTOKEN(indexes, Zy, token)
1 Zy < MERGE(Zy, {token})

2 if |Zo|=n
3 then for / — 0 to oo
4 do if /; € indexes
5 then Z; .1 — MERGE(/;, Z;)
6 (Zi+1 is a temporary index on disk.)
7 indexes «— indexes — {l;}
8 else [— Z; (Z; becomes the permanent index I;.)
9 indexes «— indexes U {I;}
10 BREAK
11 Zo — ()
LOGARITHMICMERGE()

Zo— 0 (Z is the in-memory index.)

indexes « ()

while true

do LMERGEADDTOKEN(indexes, Zy, GETNEXTTOKEN())

B WO NN =

Introduction to Information Retrieval Sec. 4.5

Logarithmic merge

= Qverall index construction time is O(T logT) where T
is total number of postings.

= We trade this efficiency gain for a slow down of
qguery searching process;

= Due to complexity of dynamic indexing, some large
search engines do not construct indexes dynamically.
Instead, a new index is built from scratch
periodically. Query processing is then switched to
the new index and the old index is deleted.

Introduction to Information Retrieval Sec. 4.5

Further issues with multiple indexes

= Collection-wide statistics are hard to maintain e.g.,
when we spoke of spell-correction: which of several
corrected alternatives do we present to the user?

= We said, pick the one with the most hits

= How do we maintain the top ones with multiple
indexes and invalidation bit vectors?

* One possibility: ignore everything but the main index for
such ordering.

= Will see more such statistics used in results ranking.

Introduction to Information Retrieval Sec. 4.5

Dynamic indexing at search engines

= All the large search engines now do dynamic
indexing

= Their indices have frequent incremental changes
= News items, blogs, new topical web pages
= Sarah Palin, ...
= But (sometimes/typically) they also periodically
reconstruct the index from scratch

= Query processing is then switched to the new index, and
the old index is deleted

Introduction to Information Retrieval

Exercise

Exercise 4.4

Forn =2and 1 < T < 30, perform a step-by-step simulation of the algorithm in
Figure 4.7. Create a table that shows, for each point in time at which T = 2 x k tokens
have been processed (1 < k < 15), which of the three indexes Iy, ..., I3 are in use. The

first three lines of the table are given below.

L L L I
270 0 0 0
40 0 0 1
60 0 1 0

Wednesday 8 May 19 57

IS
>
Q
<
4
Q
oc
<
O
5
(®)
S
S
S
o)
S
<
i)
5
(8]
S
o
o
o
S
£

Solution

10

11

12

13

10
12
14
16
18
20
22

24
26
28
30

58

Wednesday 8 May 19

Introduction to Information Retrieval Sec. 4.5

Get Search News Recaps! <

email: [

v Daily v Monthly

& Feeds and more info

’ Go)Sle | YaHoO! | Microsoft: " Columns | Marketing Searching | Ask, AOL & | Newsletters | Confe
Land Land Land Land Land Land More Lands & Feeds B) & Wel

« Local Store And Inventory Data Poised To Transform "Online Shopping” | Main | SEO Company,
Fathom Online, Acquired By Geary Interactive »

netkli

Click here for

Google Dance Is Back? Plus Google’s First Live Chat Recap $40 Free
& Hyperactive Yahoo Slurp Advertising

Is the Google Dance back? Well, not really, but | am noticing Google Dance-like behavior from
Google based on reading some of the feedback at a WebmasterWorld thread.

The Google Dance refers to how years ago, a change to Google's ranking algorithm often began

showing up slowly across data centers as they reflected different results, a sign of coming changes. Q SearCh M
These days Google's data centers are typically always showing small changes and differences, but the leading
the differences between this data center and this one seem to be more like the extremes of the past provider of search
Google Dances. marketing jobs

So either Google is preparing for a massive update or just messing around with our heads. As of
now, these results have not yet moved over to the main Google.com results.

PREMIUM MEMBERSHIP

Introduction to Information Retrieval

Other types of indexes

= Sorting algorithms discussed can all be applied to
positional indexes.

" |n ranked retrieval, postings are often ordered ac-
cording to weight or impact, with the highest
weighted postings occurring first.

" |n a doclD-sorted index, new documents are always
inserted at the end of postings lists.

" |n an impact-sorted index (will study next), the
insertion can occur anywhere, thus complicating the
update of the inverted index.

Wednesday 8 May 19 60

Introduction to Information Retrieval

Other types of indexes

= Security is an important consideration for retrieval
systems in corporations.

= User authorization is often mediated through access
control lists or ACLs.

documents

users 0/1

0 if user can’t read
doc, 1 otherwise.

» Figure 4.8 A user-document matrix for access control lists. Element (i,j) is 1 if
user i has access to document j and 0 otherwise. During query processing, a user’s

access postings list is intersected with the results list returned by the text part of the
index.

Wednesday 8 May 19 61

Introduction to Information Retrieval

Other types of indexes

= The inverted ACL index has, for each user, a
“postings list” of documents they can access — the
user’s access list.

= Search results are then intersected with this list.

However, such an index is difficult to maintain when
access permissions change.

= User membership is therefore often verified by
retrieving access information directly from the file

system at query time — even though this slows down
retrieval.

Wednesday 8 May 19 62

Introduction to Information Retrieval

Assignment #4(b)

= Exercise 4.6

= Total index construction time in blocked sort-based
indexing is broken down in Ta- ble 4.3. Fill out the
time column of the table for Reuters-RCV1 assuming
a system with the parameters given in Table 4.1.

» Table 41 Typical system parameters in 2007. The seek time is the time needed
» Table 4.3 The five steps in constructing an index for Reuters-RCV1 in blocked to position the disk head in a new position. The transfer time per byte is the rate of

sort-based indexing. Line numbers refer to Figure 4.2. transfer from disk to memory when the head is in the right position.
Step Time Symbol Statistic Value
: : - s average seek time 5ms=5x10"" s

1 rea_dl_n,g of collectlox; (line 4) . b transfer time per byte 0.02us=2x10"8s
2 10 ¥r}1t1al sorts of 10 rgcords each (line 5) processor’s clock rate 10° 51
3 writing of 10 blocks (line 6) p lowlevel operation
4 total disk transfer time for merging (lme 7) (e‘g,l compare & swap a word) 0.01 Us = 1085
5 time of actual merging (line 7) size of main memory several GB

total size of disk space 1 TB or more

63

Introduction to Information Retrieval

» Table 4.4 Collection statistics for a large collection.

Symbol Statistic Value
o N # documents 1,000,000,000
AS S |g nmen t #4 (C) Lave # tokens per document 1000
M # distinct terms 44,000,000

= Exercise 4.7

= Repeat Exercise 4.6 for the larger collection in Table
4.4. Choose a block size that is realistic for current
technology (remember that a block should easily fit
into main memory). How many blocks do you need?

» Table 41 Typical system parameters in 2007. The seek time is the time needed
» Table 4.3 The five steps in constructing an index for Reuters-RCV1 in blocked to position the disk head in a new position. The transfer time per byte is the rate of

sort-based indexing. Line numbers refer to Figure 4.2. transfer from disk to memory when the head is in the right position.
Step Time Symbol Statistic Value
1 reading of collection (line 4) > average seek time 5ms=5x10" s
e 7 . b transfer time per byte 0.02us =2x 10~8s
2 10 ¥rT1t1al sorts of 10 rgcords each (line 5) processor’s clock rate 109 51
3 writing of 10 blocks (line 6) p lowlevel operation
4 total disk transfer time for merging (line 7) (e.g., compare & swap aword) 0.01 us =108
5 time of actual merging (line 7) size of main memory several GB
total size of disk space 1 TB or more

64

Introduction to Information Retrieval

Assignment #4(d)

= Exercise 4.9

= Assume that machines in MapReduce have 100 GB of
disk space each. Assume fur- ther that the postings
list of the term the has a size of 200 GB. Then the
MapReduce algorithm as described cannot be run to
construct the index. How would you modify
MapReduce so that it can handle this case?

65

Introduction to Information Retrieval

Articles and sources to be read

* Heinz and Zobel (2003) and Zobel and Moffat (2006)
as up-do-date, in-depth treatments of index
construction.

= Dynamic indexing methods are discussed in Buttcher
et al. (2006) and Lester et al. (2006).

= Reuters’ resources are available at the following link:
https://trec.nist.eov/data/reuters/reuters.html

66

Introduction to Information Retrieval

Programming Assignment #4(e)

= Visit the link: http://hadoop.apache.org/

* The Apache Hadoop software library is a framework
that allows for the distributed processing of large
data sets across clusters of computers using simple
programming models. It is designed to scale up from
single servers to thousands of machines, each
offering local computation and storage.

= Take any collection and run the map and reduce
phase of hadoop to make an index with postings

67

Introduction to Information Retrieval

Programming Assignment #4(f)

= Visit the link: http://lucene.apache.org/

= The Apache Lucene™ project provides Java-based
indexing and search technology, as well as
spellchecking, hit highlighting and advanced analysis/
tokenization capabilities.

= Take any collection and run the logarithmic merging
of Lucene to make a dynamic index

68

Introduction to Information Retrieval

References

= Heinz, Steffen, and Justin Zobel. 2003. Efficient single-pass index
construction for text databases. JASIST 54(8):713-729. DOI: dx.doi.org/
10.1002/asi.10268.

= Zobel, Justin, and Alistair Moffat. 2006. Inverted files for text search
engines. ACM Computing Surveys 38(2).
= Buttcher, Stefan, Charles L. A. Clarke, and Brad Lushman. 2006. Hybrid

index main- tenance for growing text collections. In Proc. SIGIR, pp. 356—
363. ACM Press. DOI: doi.acm.org/10.1145/1148170.1148233.

= Lester, Nicholas, Justin Zobel, and Hugh E. Williams. 2006. Efficient online
index maintenance for contiguous inverted lists. IP&M 42(4):916-933.
DOI: dx.doi.org/10.1016/].ipm.2005.09.005.

69

