
Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

Document	
 inges*on	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Recall	
 the	
 basic	
 indexing	
 pipeline	

Tokenizer

Token stream Friends Romans Countrymen
Linguistic
modules

Modified tokens friend roman countryman

Indexer

Inverted index

friend	

roman	

countryman	

2 4

2

13 16

1

Documents to
be indexed

Friends, Romans, countrymen.

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Parsing	
 a	
 document	

§  What	
 format	
 is	
 it	
 in?	

§  pdf/word/excel/html?	

§  What	
 language	
 is	
 it	
 in?	

§  What	
 character	
 set	
 is	
 in	
 use?	

§  CP1252	
 (1	
 byte	
 encoding	
 for	
 La*n	
 and	
 other	
 western	

languages),	
 UTF-­‐8,	
 …	

§  Each	
 of	
 above	
 is	
 a	
 classifica*on	
 problem	
 (learnt	
 already	
 in	

NLP	
 or	
 can	
 be	
 seen	
 again).	

§  But	
 these	
 tasks	
 are	
 oSen	
 done	
 heuris*cally	
 (
 learn	
 from	

themselves	
 through	
 trial	
 &	
 error	
 or	
 rules…)	

Sec. 2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Complica(ons:	
 Format/language	

§  Document	
 or	
 its	
 components	
 can	
 contain	
 mul*ple	

languages/formats	

§  French	
 email	
 with	
 a	
 German	
 pdf	
 aVachment.	

§  French	
 email	
 quote	
 clauses	
 from	
 an	
 English-­‐language	

§  Urdu	
 text	
 containing	
 English/Arabic	
 words/sentences.	

§  A	
 single	
 index	
 may	
 contain	
 terms	
 from	
 many	
 languages.	

	

§  There	
 are	
 commercial	
 and	
 open	
 source	
 libraries	
 that	

can	
 handle	
 a	
 lot	
 of	
 this	
 stuff	

Sec. 2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Complica(ons:	
 What	
 is	
 a	
 document?	

We	
 return	
 from	
 our	
 query	
 “documents”	
 but	
 there	
 are	

oSen	
 interes*ng	
 ques*ons	
 of	
 grain	
 size	
 (granularity):	

What	
 is	
 a	
 unit	
 document?	

§  A	
 file?	

§  An	
 email?	
 	
 (Perhaps	
 one	
 of	
 many	
 in	
 a	
 single	
 mbox	
 file)	

§  What	
 about	
 an	
 email	
 with	
 5	
 aVachments?	

§  A	
 group	
 of	
 files	
 (e.g.,	
 PPT	
 or	
 LaTeX	
 split	
 over	
 HTML	
 pages)	

Sec. 2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

Tokens	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Tokeniza(on	

§  Input:	
 “Friends,	
 Romans	
 and	
 Countrymen”	

§  Output:	
 Tokens	

§  Friends	

§  Romans	

§  Countrymen	

§  A	
 token	
 is	
 an	
 instance	
 of	
 a	
 sequence	
 of	
 characters	

§  Each	
 such	
 token	
 is	
 now	
 a	
 candidate	
 for	
 an	
 index	
 entry,	

aSer	
 further	
 processing	

But	
 what	
 are	
 valid	
 tokens	
 to	
 emit?	

Sec. 2.2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Tokeniza(on	

§  Issues	
 in	
 tokeniza*on:	

§  Finland’s	
 capital	
 →	
 	

	
 	
 	
 	
 	
 Finland	
 AND	
 s?	
 	
 Finlands?	
 	
 Finland’s?	

§  Hewle8-­‐Packard	
 →	
 Hewle8	
 and	
 Packard	
 as	
 two	

tokens?	

§  state-­‐of-­‐the-­‐art:	
 break	
 up	
 hyphenated	
 sequence.	
 	
 	

§  co-­‐educa=on	

§  lowercase,	
 lower-­‐case,	
 lower	
 case	
 ?	

§  It	
 can	
 be	
 effec*ve	
 to	
 get	
 the	
 user	
 to	
 put	
 in	
 possible	
 hyphens	

§  San	
 Francisco:	
 one	
 token	
 or	
 two?	
 	
 	

§  How	
 do	
 you	
 decide	
 it	
 is	
 one	
 token?	

Sec. 2.2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Numbers	

§  3/20/91 	
 	
 	
 	
 Mar.	
 20,	
 1991	
 	
 	
 	
 20/3/91	

§  55	
 B.C.	

§  B-­‐52	

§  (800)	
 234-­‐2333	

§  OSen	
 have	
 embedded	
 spaces	

§  Older	
 IR	
 systems	
 may	
 not	
 index	
 numbers	

§  But	
 oSen	
 very	
 useful:	
 think	
 about	
 things	
 like	
 looking	
 up	
 error	

codes/stacktraces	
 on	
 the	
 web	

Sec. 2.2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Tokeniza(on:	
 language	
 issues	

§  French	

§  L'ensemble	
 →	
 one	
 token	
 or	
 two?	

§  L	
 ?	
 L’	
 ?	
 Le	
 ?	

§  Want	
 l’ensemble	
 to	
 match	
 with	
 un	
 ensemble	

§  Un*l	
 at	
 least	
 2003,	
 it	
 didn’t	
 on	
 Google	

§  German	
 noun	
 compounds	
 are	
 not	
 segmented	

§  LebensversicherungsgesellschaSsangestellter	

§  ‘life	
 insurance	
 company	
 employee’	

§  German	
 retrieval	
 systems	
 benefit	
 greatly	
 from	
 a	
 compound	
 spliDer	

module	

§  Can	
 give	
 a	
 15%	
 performance	
 boost	
 for	
 German	
 	

Sec. 2.2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Tokeniza(on:	
 language	
 issues	

§  Chinese	
 and	
 Japanese	
 have	
 no	
 spaces	
 between	

words:	

§  莎拉波娃现在居住在美国东南部的佛罗里达。	

§  Not	
 always	
 guaranteed	
 a	
 unique	
 tokeniza*on	
 	

§  Further	
 complicated	
 in	
 Japanese,	
 with	
 mul*ple	

alphabets	
 intermingled	

§  Dates/amounts	
 in	
 mul*ple	
 formats	

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Sec. 2.2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Tokeniza(on:	
 language	
 issues	

§  Arabic	
 (or	
 Urdu)	
 is	
 basically	
 wriVen	
 from	
 right	
 to	
 leS,	

but	
 with	
 certain	
 items	
 like	
 numbers	
 are	
 wriVen	
 from	

leS	
 to	
 right.	

§  Words	
 are	
 separated,	
 but	
 leVer	
 forms	
 within	
 a	
 word	

form	
 complex	
 ligatures	

	

§  With	
 Unicode,	
 the	
 surface	
 presenta*on	
 is	
 complex,	
 but	
 the	

stored	
 form	
 is	
 	
 straighgorward	

Sec. 2.2.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

Terms	

The	
 things	
 indexed	
 in	
 an	
 IR	
 system	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Stop	
 words	

§  Exclude	
 commonest	
 words	
 from	
 the	
 dic*onary:	

§  They	
 have	
 liVle	
 seman*c	
 content:	
 the,	
 a,	
 and,	
 to,	
 be	

§  There	
 are	
 a	
 lot	
 of	
 them:	
 ~30%	
 of	
 pos*ngs	
 for	
 top	
 30	
 words	

§  But	
 the	
 trend	
 is	
 away	
 from	
 doing	
 this:	

§  Good	
 compression	
 techniques	
 (IIR	
 5)	
 means	
 the	
 space	
 for	
 including	

stop	
 words	
 in	
 a	
 system	
 is	
 very	
 small	

§  Good	
 query	
 op*miza*on	
 techniques	
 (IIR	
 7)	
 mean	
 you	
 pay	
 liVle	
 at	

query	
 *me	
 for	
 including	
 stop	
 words.	

§  You	
 need	
 them	
 for:	

§  Phrase	
 queries:	
 “King	
 of	
 Denmark”	

§  Various	
 song	
 *tles,	
 etc.:	
 “Let	
 it	
 be”,	
 “To	
 be	
 or	
 not	
 to	
 be”	

§  “Rela*onal”	
 queries:	
 “flights	
 to	
 London”	

Sec. 2.2.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Normaliza(on	
 to	
 terms	

§  “Normalize”	
 words	
 in	
 indexed	
 as	
 well	
 as	
 query	
 text	

into	
 the	
 same	
 form.	

§  We	
 want	
 to	
 match	
 U.S.A.	
 and	
 USA	

§  Result	
 is	
 terms:	
 a	
 term	
 is	
 a	
 (normalized)	
 word	
 type,	

which	
 is	
 an	
 entry	
 in	
 our	
 IR	
 system	
 dic*onary	

§  Implicitly	
 define	
 equivalence	
 classes	
 of	
 terms	
 e.g.,	
 	

§  dele*ng	
 periods	
 to	
 form	
 a	
 term	

§  U.S.A.,	
 USA	
 	
 è	
 	
 USA	

§  dele*ng	
 hyphens	
 to	
 form	
 a	
 term	

§  an=-­‐discriminatory,	
 an=discriminatory	
 	
 è	
 	
 an=discriminatory	

Sec. 2.2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Normaliza(on:	
 other	
 languages	

§  Accents:	
 e.g.,	
 French	
 résumé	
 vs.	
 resume.	

§  Umlauts:	
 e.g.,	
 German:	
 Tuebingen	
 vs.	
 Tübingen	

§  Should	
 be	
 equivalent	

§  Approach:	

§  How	
 are	
 users	
 like	
 to	
 write	
 their	
 queries	
 for	
 these	
 words?	

§  Even	
 in	
 languages	
 that	
 standardly	
 have	
 accents,	

users	
 oSen	
 may	
 not	
 type	
 them	

§  OSen	
 best	
 to	
 normalize	
 to	
 a	
 de-­‐accented	
 term	

§  Tuebingen,	
 Tübingen,	
 Tubingen	
 è	
 Tubingen	

Sec. 2.2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Normaliza(on:	
 other	
 languages	

	

§  Tokeniza*on	
 and	
 normaliza*on	
 may	
 depend	
 on	
 the	

language	
 and	
 so	
 is	
 intertwined	
 with	
 language	

detec*on	

	

§  Crucial:	
 Need	
 to	
 “normalize”	
 indexed	
 text	
 as	
 well	
 as	

query	
 terms	
 iden*cally	

Morgen will ich in MIT …
Is	
 this	

German	
 “mit”?	

Sec. 2.2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Case	
 folding	

§  Reduce	
 all	
 leVers	
 to	
 lower	
 case	

§  excep*on:	
 upper	
 case	
 in	
 mid-­‐sentence?	

§  e.g.,	
 General	
 Motors	

§  Fed	
 vs.	
 fed	

§  SAIL	
 vs.	
 sail	

§  OSen	
 best	
 to	
 lower	
 case	
 everything,	
 since	
 users	
 will	
 use	

lowercase	
 regardless	
 of	
 ‘correct’	
 capitaliza*on…	

§  Longstanding	
 Google	
 example:	
 	
 	
 	
 	
 	
 	
 	
 	
 [fixed	
 in	
 2011…]	

§  Query	
 C.A.T.	
 	
 	

§  #1	
 result	
 is	
 for	
 “cats”.	

Sec. 2.2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Normaliza(on	
 to	
 terms	

§  An	
 alterna*ve	
 to	
 equivalence	
 classing	
 is	
 to	
 do	

asymmetric	
 expansion	

§  An	
 example	
 of	
 where	
 this	
 may	
 be	
 useful	

§  Enter:	
 window	
 	
 Search:	
 window,	
 windows	

§  Enter:	
 windows 	
 Search:	
 Windows,	
 windows,	
 window	

§  Enter:	
 Windows 	
 Search:	
 Windows	

§  Poten*ally	
 more	
 powerful,	
 but	
 less	
 efficient	

Sec. 2.2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Thesauri	
 and	
 soundex	

§  Do	
 we	
 handle	
 synonyms	
 and	
 homonyms?	

§  E.g.,	
 by	
 hand-­‐constructed	
 equivalence	
 classes	

§  car	
 =	
 automobile 	
 	
 color	
 =	
 colour	

§  We	
 can	
 rewrite	
 to	
 form	
 equivalence-­‐class	
 terms	

§  When	
 the	
 document	
 contains	
 automobile,	
 index	
 it	
 under	
 car	
 as	

well	
 (and	
 vice-­‐versa)	

§  Or	
 we	
 can	
 expand	
 a	
 query	

§  When	
 the	
 query	
 contains	
 automobile,	
 look	
 under	
 car	
 as	
 well	

§  What	
 about	
 spelling	
 mistakes?	

§  One	
 approach	
 is	
 Soundex,	
 which	
 forms	
 equivalence	
 classes	

of	
 words	
 based	
 on	
 phone*c	
 heuris*cs	

§  More	
 in	
 IIR	
 3	
 and	
 IIR	
 9	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

Stemming	
 and	
 Lemma*za*on	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Lemma(za(on	

§  Reduce	
 inflec*onal/variant	
 forms	
 to	
 base	
 form	

§  E.g.,	

§  am,	
 are,	
 is	
 →	
 be	

§  car,	
 cars,	
 car's,	
 cars'	
 →	
 car	

§  the	
 boy's	
 cars	
 are	
 different	
 colors	
 →	
 the	
 boy	
 car	
 be	

different	
 color	

§  Lemma*za*on	
 implies	
 doing	
 “proper”	
 reduc*on	
 to	

dic*onary	
 headword	
 form	

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Stemming	

§  Reduce	
 terms	
 to	
 their	
 “roots”	
 before	
 indexing	

§  “Stemming”	
 suggests	
 crude	
 affix	
 chopping	

§  e.g.,	
 automate(s),	
 automa=c,	
 automa=on	
 all	
 reduced	
 to	

automat.	

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Porter’s	
 algorithm	

§  Commonest	
 algorithm	
 for	
 stemming	
 English	

§  Results	
 suggest	
 it’s	
 at	
 least	
 as	
 good	
 as	
 other	
 stemming	

op*ons	

§  Conven*ons	
 +	
 5	
 phases	
 of	
 reduc*ons	

§  phases	
 applied	
 sequen*ally	

§  each	
 phase	
 consists	
 of	
 a	
 set	
 of	
 commands	

§  sample	
 conven*on:	
 Of	
 the	
 rules	
 in	
 a	
 compound	
 command,	

select	
 the	
 one	
 that	
 applies	
 to	
 the	
 longest	
 suffix.	

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Typical	
 rules	
 in	
 Porter	

§  sses	
 →	
 ss	

§  ies	
 →	
 i	

§  a)onal	
 →	
 ate	

§ )onal	
 →	
)on	

§  More	
 than	
 one	
 character	
 before	
 EMENT	

§  	
 (m>1)	
 EMENT	
 →	

§  replacement	
 →	
 replac	

§  cement	
 	
 →	
 cement	

	

hVps://tartarus.org/mar*n/PorterStemmer/	

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Other	
 stemmers	

§  Other	
 stemmers	
 exist:	

§  Lovins	
 stemmer	
 	

§  hVp://www.comp.lancs.ac.uk/compu*ng/research/stemming/general/lovins.htm	

§  Single-­‐pass,	
 longest	
 suffix	
 removal	
 (about	
 250	
 rules)	

§  Paice/Husk	
 stemmer:	
 hVp://paicehusk.appspot.com/	

§  Snowball	
 stemmer:	
 hVps://snowballstem.org/	

§  Use	
 Full	
 morphological	
 analysis	
 (lemma*za*on)	

§  At	
 most	
 modest	
 benefits	
 for	
 retrieval	
 as	
 compared	
 to	

stemmer	
 (IR,	
 page	
 33)	

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Language-­‐specificity	

§  Discussed	
 methods	
 embody	
 transforma*ons	
 that	
 are	

§  Language-­‐specific,	
 and	
 oSen	

§  Applica*on	
 specific.	

§  These	
 are	
 “plug-­‐in” addenda	
 to	
 the	
 indexing	
 process	

§  Both	
 open	
 source	
 and	
 commercial	
 plug-­‐ins	
 are	

available	
 for	
 handling	
 these	

	

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Does	
 stemming	
 help?	

§  English:	
 very	
 mixed	
 results.	
 Helps	
 recall	
 for	
 some	

queries	
 but	
 harms	
 precision	
 on	
 others	

§  Definitely	
 useful	
 for	
 Spanish,	
 German,	
 Finnish,	
 …	

§  30%	
 performance	
 gains	
 for	
 Finnish!	

Sec. 2.2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Introduc*on	
 to	

Informa(on	
 Retrieval	

Faster	
 pos*ngs	
 merges:	

Skip	
 pointers/Skip	
 lists	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Recall	
 basic	
 merge	

§  Walk	
 through	
 the	
 two	
 pos*ngs	
 simultaneously,	
 in	

*me	
 linear	
 in	
 the	
 total	
 number	
 of	
 pos*ngs	
 entries	

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

If	
 the	
 list	
 lengths	
 are	
 m	
 and	
 n,	
 the	
 merge	
 takes	
 O(m+n)	
 opera*ons.	

Can	
 we	
 do	
 beVer?	

Yes	
 (if	
 the	
 index	
 isn’t	
 changing	
 too	
 fast).	

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Augment	
 pos(ngs	
 with	
 skip	
 pointers	

(at	
 indexing	
 (me)	

§  Why?	
 To	
 skip	
 pos*ngs	
 that	
 are	
 irrelevant.	

§  How?	
 Where	
 do	
 we	
 place	
 skip	
 pointers?	

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

41 128

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Query	
 processing	
 with	
 skip	
 pointers	

128 2 4 8 41 48 64

31 1 2 3 8 11 17 21
31 11

41 128

Suppose we’ve stepped through the lists until we
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Algorithm	

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Where	
 do	
 we	
 place	
 skips?	

§  Tradeoff:	

§  More	
 skips	
 →	
 shorter	
 skip	
 spans	
 ⇒	
 more	
 likely	
 to	
 skip.	
 	

But	
 lots	
 of	
 comparisons	
 to	
 skip	
 pointers.	

§  Fewer	
 skips	
 →	
 few	
 pointer	
 comparison,	
 but	
 then	
 long	
 skip	

spans	
 ⇒	
 few	
 successful	
 skips.	

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Placing	
 skips	

§  Simple	
 heuris*c:	
 for	
 pos*ngs	
 of	
 length	
 L,	
 use	
 √L	

evenly-­‐spaced	
 skip	
 pointers	
 	
 	
 	
 	
 [Moffat	
 and	
 Zobel	
 1996]	

§  This	
 ignores	
 the	
 distribu*on	
 of	
 query	
 terms.	

§  Easy	
 if	
 the	
 index	
 is	
 rela*vely	
 sta*c;	
 harder	
 if	
 L	
 keeps	

changing	
 because	
 of	
 updates.	

§  This	
 definitely	
 used	
 to	
 help;	
 with	
 modern	
 hardware	
 it	

may	
 not	
 unless	
 you’re	
 memory-­‐based	
 	
 	
 [Bahle	
 et	
 al.	
 2002]	
 	

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Home	
 Work	
 #	
 2(a)	

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 #	
 2(b)	

§  Fast	
 phrase	
 querying	
 with	
 combined	
 indexes	

(Williams,	
 Zobel,	
 Bahle	
 2004)	

§  Efficient	
 phrase	
 querying	
 with	
 an	
 auxiliary	
 index	

(Bahle,	
 Williams,	
 Zobel	
 2002)	

§  A	
 skip	
 list	
 cookbook	
 (Pugh	
 1990)	

§  Read	
 these	
 ar*cles	
 and	
 submit	
 one	
 page	
 summary	

for	
 each	
 of	
 them.	
 It	
 can	
 happen	
 I	
 will	
 ask	
 about	
 it	

some	
 day.	

Sec. 2.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 pos(ngs	
 and	
 phrase	
 queries	

§  Phrase	
 queries	

§  To	
 answer	
 queries	
 such	
 as	
 “stanford	
 university”	
 –	
 as	
 a	

phrase	

§  Sentence	
 “I	
 went	
 to	
 university	
 at	
 Stanford”	
 is	
 not	
 a	
 match.	
 	

§  Sentence	
 “The	
 inventor	
 Stanford	
 Ovshinsky	
 never	
 went	
 to	

university”	
 is	
 not	
 a	
 match.	

§  Phrase	
 queries	
 has	
 proven	
 easily	
 understood	
 by	
 users;	
 	

§  For	
 this,	
 it	
 no	
 longer	
 suffices	
 to	
 store	
 only	
 <term	
 :	
 docs>	

entries	

	

Sec. 2.4

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

A	
 first	
 aDempt:	
 Biword	
 indexes	

§  Index	
 every	
 consecu*ve	
 pair	
 of	
 terms	
 in	
 the	
 text	
 as	
 a	

phrase	

§  For	
 example	
 the	
 text	
 “Friends,	
 Romans,	
 Countrymen”	

would	
 generate	
 the	
 biwords	

§  friends	
 romans	

§  romans	
 countrymen	

§  Each	
 of	
 these	
 biwords	
 is	
 now	
 a	
 dic*onary	
 term	
 and	

two-­‐word	
 phrase	
 query-­‐processing	
 is	
 now	

immediate.	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Longer	
 phrase	
 queries	

§  Longer	
 phrases	
 are	
 processed	
 as	
 we	
 did	
 with	
 wild-­‐
cards:	

§  stanford	
 university	
 palo	
 alto	
 can	
 be	
 broken	
 into	
 the	

Boolean	
 query	
 on	
 biwords:	

§  stanford	
 university	
 AND	
 university	
 palo	
 AND	
 palo	
 alto	

§  Without	
 the	
 docs,	
 we	
 cannot	
 verify	
 that	
 the	
 docs	

matching	
 the	
 above	
 Boolean	
 query	
 do	
 contain	
 the	

actual	
 phrase	
 words	
 in	
 a	
 sequence.	
 They	
 can	
 be	
 at	

dispersed	
 loca*ons	
 in	
 a	
 doc	
 resul*ng	
 occurrence	
 of	

given	
 phrase	
 posi*vely	
 while	
 it	
 is	
 non-­‐exis*ng.	

Can have false positives!

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Extended	
 biwords	

§  Parse	
 the	
 text	
 using	
 part-­‐of-­‐speech-­‐tagging	
 (POST).	

§  Bucket	
 the	
 terms	
 into	
 Nouns	
 (N)	
 and	
 ar*cles/preposi*ons	
 (X).	

§  Call	
 any	
 string	
 of	
 terms	
 of	
 the	
 form	
 NX*N	
 an	
 extended	

biword.	

§  Each	
 such	
 extended	
 biword	
 is	
 now	
 made	
 a	
 term	
 in	
 the	

dic*onary.	

§  Example:	
 	
 catcher	
 in	
 the	
 rye	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 N	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 X	
 	
 	
 X	
 	
 	
 	
 N	

§  Query	
 processing:	
 parse	
 it	
 into	
 N’s	
 and	
 X’s	

§  Segment	
 query	
 into	
 enhanced	
 biwords	

§  Look	
 up	
 in	
 index:	
 catcher	
 rye	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Issues	
 for	
 biword	
 indexes	

§  False	
 posi*ves,	
 as	
 noted	
 before	

§  Index	
 blowup	
 due	
 to	
 bigger	
 dic*onary	

§  Infeasible	
 for	
 more	
 than	
 biwords	

§  Biword	
 indexes	
 are	
 not	
 the	
 standard	
 solu*on	
 but	
 can	

be	
 part	
 of	
 a	
 compound	
 strategy	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  Biword	
 index	
 is	
 not	
 the	
 standard	
 solu*on.	
 	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  Suppose	
 the	
 pos*ngs	
 lists	
 for	
 to	
 and	
 be	
 are	
 as	
 in	
 Figure	
 2.11,	
 and	
 the	

query	
 is	
 “to	
 be	
 or	
 not	
 to	
 be”.	
 	

§  The	
 pos*ngs	
 lists	
 to	
 access	
 are:	
 to,	
 be,	
 or,	
 not.	
 We	
 will	
 examine	

intersec*ng	
 the	
 pos*ngs	
 lists	
 for	
 to	
 and	
 be.	
 We	
 first	
 look	
 for	
 documents	

that	
 contain	
 both	
 terms	
 e.g.	
 1,	
 4,	
 and	
 5.	
 	

§  to,	
 993427:	

⟨1,	
 6:	
 ⟨7,	
 18,	
 33,	
 72,	
 86,	
 231⟩;	
 	

2,	
 5:	
 ⟨1,	
 17,	
 74,	
 222,	
 255⟩;	
 	

4,	
 5:	
 ⟨8,	
 16,	
 190,	
 429,	
 433⟩;	
 	

5,	
 2:	
 ⟨363,	
 367⟩;	

7,	
 3:	
 ⟨13,	
 23,	
 191⟩;	
 ...⟩	
 	

§  be,	
 178239:	

⟨	
 1,	
 2:	
 ⟨17,	
 25⟩;	
 	

	
 4,	
 5:	
 ⟨17,	
 191,	
 291,	
 430,	
 434⟩;	
 	

	
 5,	
 3:	
 ⟨14,	
 19,	
 101⟩;	
 ...⟩	
 	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  Then,	
 we	
 look	
 for	
 places	
 in	
 the	
 lists	
 where	
 there	
 is	
 an	

occurrence	
 of	
 be	
 with	
 a	
 token	
 index	
 one	
 higher	
 than	
 a	

posi*on	
 of	
 to,	
 	

§  to,	
 993427:	

⟨1,	
 6:	
 ⟨7,	
 18,	
 33,	
 72,	
 86,	
 231⟩;	
 	

4,	
 5:	
 ⟨8,	
 16,	
 190,	
 429,	
 433⟩;	
 	

5,	
 2:	
 ⟨363,	
 367⟩;	

§  be,	
 178239:	

⟨	
 1,	
 2:	
 ⟨17,	
 25⟩;	
 	

	
 4,	
 5:	
 ⟨17,	
 191,	
 291,	
 430,	
 434⟩;	
 	

	
 5,	
 3:	
 ⟨14,	
 19,	
 101⟩;	
 ...⟩	
 	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  and	
 then	
 we	
 look	
 for	
 another	
 occurrence	
 of	
 each	
 word	
 with	

token	
 index	
 4	
 higher	
 than	
 the	
 first	
 occurrence.	
 In	
 the	
 above	

lists,	
 the	
 paVern	
 of	
 occurrences	
 that	
 is	
 a	
 possible	
 match	
 is:	

§  to,	
 993427:	

4,	
 5:	
 ⟨16,	
 190,	
 429,	
 433⟩;	
 	

	
 ...⟩	
 	

§  be,	
 178239:	

	
 4,	
 5:	
 ⟨17,	
 191,	
 430,	
 434⟩;	
 	

	
 ...⟩	
 	

	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  Same	
 concept	
 within	
 k	
 word	
 proximity	
 searches,	
 like	

§  employment	
 /3	
 place	
 	

§  Here,	
 /k	
 means	
 “within	
 k	
 words	
 of	
 (on	
 either	
 side)”.	

Clearly,	
 posi*onal	
 indexes	
 can	
 be	
 used	
 for	
 such	

queries;	
 bi-­‐word	
 indexes	
 cannot.	
 	

§  Figure	
 2.12	
 an	
 algorithm	
 for	
 sa*sfying	
 within	
 k	
 word	

proximity	
 searches;	
 	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  hVps://gist.github.com/pj4dev/33fdaafc4205b927642927193bbf1f3b	

Sec. 2.4.1

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 indexes	
 	

§  Posi(onal	
 index	
 size	

§  You	
 can	
 compress	
 posi*on	
 values/offsets:	
 we’ll	
 talk	
 about	

that	
 later	
 in	
 next	
 lectures.	

§  Nevertheless,	
 a	
 posi*onal	
 index	
 expands	
 pos*ngs	
 storage	

substan)ally	

§  Nevertheless,	
 a	
 posi*onal	
 index	
 is	
 now	
 standardly	
 used	

because	
 of	
 the	
 power	
 and	
 usefulness	
 of	
 phrase	
 and	

proximity	
 queries	
 …	
 whether	
 used	
 explicitly	
 or	
 implicitly	
 in	

a	
 ranking	
 retrieval	
 system.	

Sec. 2.4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Posi(onal	
 index	
 size	

§  Need	
 an	
 entry	
 for	
 each	
 occurrence,	
 not	
 just	
 once	
 per	

document	

§  Index	
 size	
 depends	
 on	
 average	
 document	
 size	

§  Average	
 web	
 page	
 has	
 <1000	
 terms	

§  SEC	
 filings,	
 books,	
 even	
 some	
 epic	
 poems	
 (heroic	
 based	
 poems)…	

easily	
 100,000	
 terms	

§  Consider	
 a	
 term	
 with	
 frequency	
 1	
 in	
 1000	
 terms	
 on	

average.	

Sec. 2.4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Rules	
 of	
 thumb	

§  A	
 posi*onal	
 index	
 is	
 2–4	
 as	
 large	
 as	
 a	
 non-­‐posi*onal	

index	

§  Posi*onal	
 index	
 size	
 35–50%	
 of	
 volume	
 of	
 original	

text	

§  Caveat:	
 all	
 of	
 this	
 holds	
 for	
 “English-­‐like”	
 languages	

Sec. 2.4.2

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Combina(on	
 schemes	

§  These	
 two	
 approaches	
 (Posi*onal	
 index	
 and	
 Biword	

Index)	
 can	
 be	
 profitably	
 combined	

§  For	
 par*cular	
 phrases	
 (“Michael	
 Jackson”,	
 “Britney	
 Spears”)	
 it	

is	
 inefficient	
 to	
 keep	
 on	
 merging	
 posi*onal	
 pos*ngs	
 lists,	
 even	

more	
 so	
 for	
 phrases	
 like	
 “The	
 Who”	

§  Williams	
 et	
 al.	
 (2004)	
 evaluated	
 a	
 more	
 sophis*cated	

mixed	
 indexing	
 scheme.	

§  A	
 typical	
 web	
 query	
 mixture	
 was	
 executed	
 in	
 ¼	
 of	
 the	
 *me	
 of	

using	
 just	
 a	
 posi*onal	
 index	

§  It	
 required	
 26%	
 more	
 space	
 than	
 having	
 a	
 posi*onal	
 index	

alone	

Sec. 2.4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Class	
 Exercise	

§  Exercise	
 2.9	
 	

§  Below	
 is	
 a	
 part	
 of	
 index	
 with	
 posi*ons	
 in	
 the	
 form	
 doc1:	
 ⟨𝑝𝑜𝑠1,𝑝𝑜𝑠2,𝑝𝑜𝑠3,...⟩;	
 and	

doc2:	
 ⟨𝑝𝑜𝑠1,𝑝𝑜𝑠2,...⟩	
 	

§  angels:	
 2	
 :	
 ⟨36,	
 174,	
 252,	
 651⟩;	
 4	
 :	
 ⟨12,	
 22,	
 102,	
 432⟩;	
 7	
 :	
 ⟨17⟩;	

§  fools:	
 2	
 :	
 ⟨1,17,74,222⟩;	
 4	
 :	
 ⟨8,78,108,458⟩;	
 7	
 :	
 ⟨3,13,23,193⟩;	

§  fear:	
 2	
 :	
 ⟨87,	
 704,	
 722,	
 901⟩;	
 4	
 :	
 ⟨13,	
 43,	
 113,	
 433⟩;	
 7	
 :	
 ⟨18,	
 328,	
 528⟩;	

§  in:	
 2	
 :	
 ⟨3,37,76,444,851⟩;	
 4	
 :	
 ⟨10,20,110,470,500⟩;	
 7	
 :	
 ⟨5,15,25,195⟩;	

§  rush:	
 2	
 :	
 ⟨2,66,194,321,702⟩;	
 4	
 :	
 ⟨9,69,149,429,569⟩;	
 7	
 :	
 ⟨4,14,404⟩;	

§  to:	
 2	
 :	
 ⟨47,	
 86,	
 234,	
 999⟩;	
 4	
 :	
 ⟨14,	
 24,	
 774,	
 944⟩;	
 7	
 :	
 ⟨199,	
 319,	
 599,	
 709⟩;	

§  tread:	
 2	
 :	
 ⟨57,	
 94,	
 333⟩;	
 4	
 :	
 ⟨15,	
 35,	
 155⟩;	
 7	
 :	
 ⟨20,	
 320⟩;	
 	

§  where:	
 2	
 :	
 ⟨67,	
 124,	
 393,	
 1001⟩;	
 4	
 :	
 ⟨11,	
 41,	
 101,	
 421,	
 431⟩;	
 7	
 :	
 ⟨15,	
 35,	
 735⟩;	

§  The	
 following	
 terms	
 are	
 phrase	
 queries.	
 Which	
 documents	
 correspond	
 to	
 the	

following	
 queries	
 and	
 on	
 which	
 posi*ons?	

§  a)	
 "fools	
 rush	
 in”	

§  b)	
 "fools	
 rush	
 in"	
 AND	
 "angels	
 fear	
 to	
 tread".	
 	

§  c)	
 The	
 index	
 is	
 incorrect.	
 How?	
 	

Sec. 2.4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Class	
 Exercise	

§  Exercise	
 2.9	
 (Solu(on)	

§  In	
 order	
 to	
 retrieve	
 the	
 query	
 it	
 is	
 necessary	
 that	
 the	
 words	
 are	
 in	
 a	
 sequence.	
 That	

is,	
 if	
 the	
 word	
 angels	
 is	
 in	
 document	
 1	
 on	
 posi*on	
 3,	
 then	
 the	
 word	
 fear	
 have	
 to	
 be	

in	
 the	
 same	
 document	
 on	
 the	
 posi*on	
 4.	
 	

§  For	
 the	
 exercise	
 a)	
 we	
 calculate	
 all	
 possible	
 posi*ons	
 of	
 the	
 phrase.	
 	

§  Word	
 fools	
 appears	
 in	
 document	
 2	
 on	
 posi*ons	
 ⟨1,	
 17,	
 74,	
 222⟩.	
 That	
 means	

that	
 the	
 word	
 rush	
 has	
 to	
 appear	
 on	
 posi*ons	
 ⟨2,	
 18,	
 75,	
 223⟩	
 and	
 the	
 word	
 in	

on	
 posi*ons	
 ⟨3,	
 19,	
 76,	
 224⟩.	
 Similar	
 process	
 is	
 applied	
 on	
 documents	
 4	
 and	
 7	

which	
 retrieves	
 the	
 requested	
 results.	
 	

§  Fools:2	
 :	
 ⟨1,17,74,222⟩;	
 	
 	
 4	
 :	
 ⟨8,78,108,458⟩;	
 	
 	
 7	
 :	
 ⟨3,13,23,193⟩;	

§  rush:	
 	
 2	
 :	
 ⟨2,66,194,321,702⟩;	
 	
 4	
 :	
 ⟨9,69,149,429,569⟩;	
 	
 7	
 :	
 ⟨4,14,404⟩;	

§  in:	
 	
 	
 	
 	
 	
 2	
 :	
 ⟨3,37,76,444,851⟩;	
 	
 4	
 :	
 ⟨10,20,110,470,500⟩;	
 7	
 :	
 ⟨5,15,25,195⟩;	

§  RESULT:	
 <doc2,	
 doc4,	
 doc7>	

Sec. 2.4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Class	
 Exercise	

§  Exercise	
 2.9	
 (Solu(on)	

§  For	
 the	
 exercise	
 b)	
 we	
 find	
 the	
 requested	
 posi*ons	
 for	
 also	
 the	
 term	
 angels	

fear	
 to	
 tread.	
 	

§  angels:	
 2	
 :	
 ⟨36,	
 174,	
 252,	
 651⟩;	
 	
 4	
 :	
 ⟨12,	
 22,	
 102,	
 432⟩;	
 	
 7	
 :	
 ⟨17⟩;	

§  fear:	
 	
 2	
 :	
 ⟨87,	
 704,	
 722,	
 901⟩;	
 	
 4	
 :	
 ⟨13,	
 43,	
 113,	
 433⟩;	
 	
 7	
 :	
 ⟨18,	
 328,	

528⟩;	

§  to:	
 	
 2	
 :	
 ⟨47,	
 86,	
 234,	
 999⟩;	
 	
 4	
 :	
 ⟨14,	
 24,	
 774,	
 944⟩;	
 	
 7	
 :	
 ⟨199,	
 319,	
 599,	

709⟩;	

§  tread:	
 	
 2	
 :	
 ⟨57,	
 94,	
 333⟩;	
 	
 	
 4	
 :	
 ⟨15,	
 35,	
 155⟩;	
 	
 	
 	
 	
 	
 	
 7	
 :	
 ⟨20,	
 320⟩;	
 	

§  RESULT:	
 <doc1>	

§  They	
 appear	
 in	
 the	
 correct	
 order	
 in	
 doc4:	
 {⟨12,	
 13,	
 14,	
 15⟩}.	
 Taking	
 the	

first	
 part	
 from	
 a),	
 we	
 only	
 check	
 whether	
 the	
 results	
 overlap	
 {doc2,	

doc4,	
 doc7}	
 ∩	
 {doc4}	
 =	
 doc4.	
 	

§  For	
 the	
 exercise	
 c)	
 we	
 need	
 to	
 have	
 a	
 look	
 into	
 document	
 7,	
 where	
 on	

posi*on	
 15	
 are	
 two	
 terms	
 in	
 and	
 where.	
 	

Sec. 2.4.3

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 #2(c)	

56	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 #2(d)	

§  Exercise	
 2.13	
 [⋆⋆]	
 	

§  Suppose	
 we	
 wish	
 to	
 use	
 a	
 pos*ngs	
 intersec*on	
 procedure	
 to	
 determine	

simply	
 the	
 list	
 of	
 documents	
 that	
 sa*sfy	
 a	
 /k	
 clause,	
 rather	
 than	
 returning	

the	
 list	
 of	
 posi*ons,	
 as	
 in	
 Figure	
 2.12	
 (page	
 42).	
 For	
 simplicity,	
 assume	
 k	
 ≥	

2.	
 Let	
 L	
 denote	
 the	
 total	
 number	
 of	
 occurrences	
 of	
 the	
 two	
 terms	
 in	
 the	

document	
 collec*on	
 (i.e.,	
 the	
 sum	
 of	
 their	
 collec*on	
 frequencies).	
 Which	

of	
 the	
 following	
 is	
 true?	
 Jus*fy	
 your	
 answer.	
 	

a.  The	
 merge	
 can	
 be	
 accomplished	
 in	
 a	
 number	
 of	
 steps	
 linear	
 in	
 L	
 and	

independent	
 of	
 k,	
 and	
 we	
 can	
 ensure	
 that	
 each	
 pointer	
 moves	
 only	

to	
 the	
 right.	
 	

b.  The	
 merge	
 can	
 be	
 accomplished	
 in	
 a	
 number	
 of	
 steps	
 linear	
 in	
 L	
 and	

independent	
 of	
 k,	
 but	
 a	
 pointer	
 may	
 be	
 forced	
 to	
 move	
 non-­‐
monotonically	
 (i.e.,	
 to	
 some*mes	
 back	
 up)	
 	

c.  The	
 merge	
 can	
 require	
 kL	
 steps	
 in	
 some	
 cases.	
 	

	

57	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 #2(e)	

§  Exercise	
 2.14	
 [⋆⋆]	
 	

§  How	
 could	
 an	
 IR	
 system	
 combine	
 use	
 of	
 a	
 posi*onal	
 index	
 and	
 use	
 of	
 stop	

words?	
 What	
 is	
 the	
 poten*al	
 problem,	
 and	
 how	
 could	
 it	
 be	
 handled?	
 	

58	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 #2(f)	

§  Visit	
 the	
 following	
 link	
 and	
 build	
 a	
 posi*onal	
 index	
 based	

search	
 engine	
 and	
 then	
 submit	
 the	
 report	
 with	
 output.	

§  hVp://www.elemarjr.com/en/2018/02/phrase-­‐queries-­‐
and-­‐posi*onal-­‐indexes-­‐in-­‐c/	

§  Presenta*on	
 is	
 due	
 at	
 any	
 *me	
 during	
 class	
 hours.	

59	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Ar(cles	
 to	
 be	
 Read	

§  Spoken	
 language	
 iden*fica*on:	

§  Hughes,	
 Baden,	
 Timothy	
 Baldwin,	
 Steven	
 Bird,	
 Jeremy	
 Nicholson,	
 and	

Andrew	
 MacKinlay.	
 2006.	
 Reconsidering	
 language	
 iden*fica*on	
 for	

wriVen	
 language	
 re-­‐	
 sources.	
 In	
 Proc.	
 Interna)onal	
 Conference	
 on	

Language	
 Resources	
 and	
 Evalua)on,	
 pp.	
 485–488.	
 	

§  Discussion	
 of	
 the	
 posi*ve	
 and	
 nega*ve	
 impact	
 of	
 stemming	
 :	

§  Hollink,	
 Vera,	
 Jaap	
 Kamps,	
 Christof	
 Monz,	
 and	
 Maarten	
 de	
 Rijke.	
 2004.	

Monolingual	
 document	
 retrieval	
 for	
 European	
 languages.	
 IR	
 7(1):33–
52.	
 	

§  Skip	
 pointer	
 extended	
 technique:	

§  Boldi,	
 Paolo,	
 and	
 Sebas*ano	
 Vigna.	
 2005.	
 Compressed	
 perfect	

embedded	
 skip	
 lists	
 for	
 quick	
 inverted-­‐index	
 lookups.	
 In	
 Proc.	
 SPIRE.	

Springer.	
 	

§  Strohman,	
 Trevor,	
 and	
 W.	
 Bruce	
 CroS.	
 2007.	
 Efficient	
 document	

retrieval	
 in	
 main	
 memory.	
 In	
 Proc.	
 SIGIR,	
 pp.	
 175–182.	
 ACM	
 Press.	
 	

60	

Introduc)on	
 to	
 Informa)on	
 Retrieval	
 	
 	
 	
 	

Homework	
 (Not	
 for	
 submission)	

§  Visit	
 the	
 following	
 link;	
 Execute	
 the	
 source	
 code;	
 See	
 the	

errors	
 in	
 the	
 output	
 and	
 try	
 to	
 remove	
 it.	

§  hVps://github.com/manning/MergeAlgorithms	

61	

