Introduction to

Information Retrieval

Document ingestion

Introduction to Information Retrieval

Recall the basic indexing pipeline

(= I=H=
1 = :‘:1 .
Eogucrlnent; to = A — | Friends, Romans, countrymen.
e indexe |

| | E

[Tokenizer}

Token stream

Friends || Romans | | Countrymen

Linguistic W
modules

Modified tokens 1 friend | |roman| |countryman
[Indexer} friend m——> |24 —
Inverted index 1 roman ——> |1 12—
countryman [°———>|13 1 16

Introduction to Information Retrieval Sec. 2.1

Parsing a document

= What formatisitin?
= pdf/word/excel/html?
= What languageisitin?
= What character set is in use?

"= CP1252 (1 byte encoding for Latin and other western
languages), UTF-S, ...

= Each of above is a classification problem (learnt already in
NLP or can be seen again).

= But these tasks are often done heuristically (learn from
themselves through trial & error or rules...)

Introduction to Information Retrieval Sec. 2.1

Complications: Format/language

= Document or its components can contain multiple
languages/formats

" French email with a German pdf attachment.

* French email quote clauses from an English-language

= Urdu text containing English/Arabic words/sentences.

= Asingle index may contain terms from many languages.

"= There are commercial and open source libraries that
can handle a lot of this stuff

Introduction to Information Retrieval Sec. 2.1

Complications: What is a document?

We return from our query “documents’ but there are
often interesting questions of grain size (granularity):

What is a unit document?
= A file?

= An email? (Perhaps one of many in a single mbox file)
= What about an email with 5 attachments?

= A group of files (e.g., PPT or LaTeX split over HTML pages)

Introduction to

Information Retrieval

Tokens

Introduction to Information Retrieval Sec. 2.2.1

Tokenization

* |nput: “Friends, Romans and Countrymen’

= Qutput: Tokens
= Friends

" Romans

= Countrymen

= A tokenis an instance of a sequence of characters

= Each such token is now a candidate for an index entry,
after further processing

But what are valid tokens to emit?

Introduction to Information Retrieval Sec. 2.2.1

Tokenization

" |ssues in tokenization:
* Finland’s capital —
Finland AND s? Finlands? Finland’s?
= Hewlett-Packard — Hewlett and Packard as two
tokens?

= state-of-the-art: break up hyphenated sequence.
= co-education
= lowercase, lower-case, lower case ?

= |t can be effective to get the user to put in possible hyphens

= San Francisco: one token or two?

= How do you decide it is one token?

Introduction to Information Retrieval Sec. 2.2.1

Numbers

= 3/20/91 Mar. 20, 1991 20/3/91
= 55B.C.
"= B-52
= (800) 234-2333
= Often have embedded spaces

= Older IR systems may not index numbers

= But often very useful: think about things like looking up error
codes/stacktraces on the web

Introduction to Information Retrieval Sec. 2.2.1

Tokenization: language issues

= French

" ['ensemble — one token or two?
= L?L?Lle?
= Want I'ensemble to match with un ensemble
= Until at least 2003, it didn’t on Google

= German noun compounds are not segmented
= Lebensversicherungsgesellschaftsangestellter
= ‘life insurance company employee’

= German retrieval systems benefit greatly from a compound splitter
module

= Can give a 15% performance boost for German

Introduction to Information Retrieval Sec. 2.2.1

Tokenization: language issues

* Chinese and Japanese have no spaces between
words:

= SSHLREDEREREREZREE G D BiX,

= Not always guaranteed a unique tokenization

" Further complicated in Japanese, with multiple
alphabets intermingled

= Dates/amounts in multiple formats
7#—¥1y$00?iliﬁﬁ$5 @'tb#&7%t$50mm59)
Katakana Hiragana Kanji Romaji

End-user can express query entirely in hiragana!

Introduction to Information Retrieval Sec. 2.2.1

Tokenization: language issues

= Arabic (or Urdu) is basically written from right to left,
but with certain items like numbers are written from
left to right.

= Words are separated, but letter forms within a word
form complex ligatures
(il Y e lale 132 320 1962 A (A i jall culiial

— > — > «— START
‘Algeria achieved its independence in 1962 after 132 years of French occupation.’

= With Unicode, the surface presentation is complex, but the
stored form is straightforward

Introduction to

Information Retrieval

Terms
The things indexed in an IR system

Introduction to Information Retrieval Sec. 2.2.2

Stop words

" Exclude commonest words from the dictionary:
= They have little semantic content: the, a, and, to, be
= There are a lot of them: ~30% of postings for top 30 words

= But the trend is away from doing this:

= Good compression techniques (IIR 5) means the space for including
stop words in a system is very small
= Good query optimization techniques (IR 7) mean you pay little at
guery time for including stop words.
= You need them for:
= Phrase queries: “King of Denmark”
= Various song titles, etc.: “Let it be”, “To be or not to be”
= “Relational” queries: “flights to London”

Introduction to Information Retrieval Sec. 2.2.3

Normalization to terms

= “Normalize” words in indexed as well as query text
into the same form.

= We want to match U.S.A. and USA

" Resultis terms: a termis a (normalized) word type,
which is an entry in our IR system dictionary

* |mplicitly define equivalence classes of terms e.g.,

= deleting periods to form a term
= U.S.A.,USA 2 USA

= deleting hyphens to form a term

= anti-discriminatory, antidiscriminatory = antidiscriminatory

Introduction to Information Retrieval Sec. 2.2.3

Normalization: other languages

= Accents: e.g., French résumé vs. resume.

= Umlauts: e.g., German: Tuebingen vs. Tiibingen
= Should be equivalent

= Approach:
= How are users like to write their queries for these words?

= Even in languages that standardly have accents,
users often may not type them

= Often best to normalize to a de-accented term
= Tuebingen, Tiibingen, Tubingen =» Tubingen

Introduction to Information Retrieval Sec. 2.2.3

Normalization: other languages

= Tokenization and normalization may depend on the
language and so is intertwined with language
detection

Is this
Morgen will ich inf MIT, / German “mit’ ?

= Crucial: Need to “normalize” indexed text as well as
query terms identically

Introduction to Information Retrieval Sec. 2.2.3

Case folding

= Reduce all letters to lower case

= exception: upper case in mid-sentence?

= e.g., General Motors
= Fed vs. fed
= SAIL vs. sail

= Often best to lower case everything, since users will use
lowercase regardless of ‘correct’ capitalization...

= Longstanding Google example: [fixed in 2011...]
= Query C.A.T.
= #1 result is for “cats’.

Introduction to Information Retrieval Sec. 2.2.3

Normalization to terms

= An alternative to equivalence classing is to do
asymmetric expansion

= An example of where this may be useful
= Enter: window Search: window, windows
= Enter: windows Search: Windows, windows, window
= Enter: Windows Search: Windows

= Potentially more powerful, but less efficient

Introduction to Information Retrieval

Thesauri and soundex

"= Do we handle synonyms and homonyms?

= E.g., by hand-constructed equivalence classes
= car = automobile color = colour

= We can rewrite to form equivalence-class terms

= When the document contains automobile, index it under car as
well (and vice-versa)

= Or we can expand a query
= When the query contains automobile, look under car as well
= What about spelling mistakes?

= One approach is Soundex, which forms equivalence classes
of words based on phonetic heuristics

= MoreinllIR3andIIR9

Introduction to

Information Retrieval

Stemming and Lemmatization

Introduction to Information Retrieval Sec. 2.2.4

Lemmatization

= Reduce inflectional/variant forms to base form
= E.g.,

" am, are, is — be

= car, cars, car's, cars' — car

" the boy's cars are different colors — the boy car be
different color

= Lemmatization implies doing “proper” reduction to
dictionary headword form

Introduction to Information Retrieval Sec. 2.2.4

Stemming

= Reduce terms to their “roots” before indexing

= “Stemming” suggests crude affix chopping

" e.g., automate(s), automatic, automation all reduced to
automat.

for example compressed for exampl compress and
and compression are both q compress ar both accept
accepted as equivalent to as equival to compress

compress.

Introduction to Information Retrieval Sec. 2.2.4

Porter’ s algorithm

= Commonest algorithm for stemming English
= Results suggest it’ s at least as good as other stemming
options
= Conventions + 5 phases of reductions
= phases applied sequentially
= each phase consists of a set of commands

= sample convention: Of the rules in a compound command,
select the one that applies to the longest suffix.

Introduction to Information Retrieval Sec. 2.2.4

Typical rules in Porter

" sses — SS

= jes — |

" gtional — ate
" tional — tion

= More than one character before EMENT
= (m>1) EMENT =>

= replacement - replac
= cement - cement

https://tartarus.org/martin/PorterStemmer/

Introduction to Information Retrieval Sec. 2.2.4

Other stemmers

= Other stemmers exist:
® | ovins stemmer

= http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

= Single-pass, longest suffix removal (about 250 rules)
= Paice/Husk stemmer: http://paicehusk.appspot.com/
= Snowball stemmer: https://snowballstem.org/

= Use Full morphological analysis (lemmatization)

= At most modest benefits for retrieval as compared to
stemmer (IR, page 33)

Introduction to Information Retrieval Sec. 2.2.4

Language-specificity

= Discussed methods embody transformations that are
= Language-specific, and often
= Application specific.

= These are “plug-in” addenda to the indexing process

= Both open source and commercial plug-ins are
available for handling these

Introduction to Information Retrieval Sec. 2.2.4

Does stemming help?

= English: very mixed results. Helps recall for some
qgueries but harms precision on others

= Definitely useful for Spanish, German, Finnish, ...
" 30% performance gains for Finnish!

Introduction to

Information Retrieval

Faster postings merges:
Skip pointers/Skip lists

Introduction to Information Retrieval Sec. 2.3

Recall basic merge

= Walk through the two postings simultaneously, in
time linear in the total number of postings entries

24— 841 m48 — 64— 128 Brutus
' 122238111721~ 31 |Caesar

If the list lengths are m and n, the merge takes O(m+n) operations.

Can we do better?
Yes (if the index isn’ t changing too fast).

Augment postings with skip pointers

(at indexing time)

A 128
24841 48 4 64—128

P - e ——
123811 17721 131

= Why? To skip postings that are irrelevant.

= How? Where do we place skip pointers?

Introduction to Information Retrieval Sec. 2.3

Query processing with skip pointers

A 128
248 4l 48 7 64—128

P - &
I 2—3—8 11 17721 =31

Suppose we’ ve stepped through the lists until we
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower listis 31, so
we can skip ahead past the intervening postings.

Introduction to Information Retrieval Sec. 2.3

~ Algorithm

INTERSECTWITHSKIPS(p1, p2)

1 answer « ()

2 while p; # NIL and p; # NIL

3 doifdocID(p1) = docID(p3)

4 then ADD(answer,docID(p1))

5 p1 « next(p1)

6 pa <« next(pz)

7 else if docID(p1) < docID(p3)

8 then if hasSkip(p1) and (docID(skip(p1)) < docID(p3))

9 then while hasSkip(p1) and (docID(skip(p1)) < docID(p3))
10 do p1 « skip(p1)
11 else py « next(pq)
12 else if hasSkip(p,) and (docID(skip(p2)) < docID(p1))
13 then while hasSkip(p,) and (docID(skip(p2)) < docID(p1))
14 do py « skip(p2)
15 else p; « next(py)

16 return answer

Introduction to Information Retrieval Sec. 2.3

Where do we place skips?

= Tradeoff:

" More skips — shorter skip spans = more likely to skip.
But lots of comparisons to skip pointers.

= Fewer skips — few pointer comparison, but then long skip
spans = few successful skips.

Introduction to Information Retrieval Sec. 2.3

Placing skips

= Simple heuristic: for postings of length L, use VL
evenly-spaced skip pointers [Moffat and Zobel 1996]

= This ignores the distribution of query terms.

= Easy if the index is relatively static; harder if L keeps
changing because of updates.

= This definitely used to help; with modern hardware it
may not unless you’ re memory-based [Bahle et al. 2002]

Introduction to Information Retrieval Sec. 2.3

Home Work # 2(a)

Exercise 2.6 [x]

We have a two-word query. For one term the postings list consists of the following 16
entries:

[4,6,10,12,14,16,18,20,22,32,47,81,120,122,157,180]
and for the other it is the one entry postings list:
[47].

Work out how many comparisons would be done to intersect the two postings lists
with the following two strategies. Briefly justify your answers:

a. Using standard postings lists

b. Using postings lists stored with skip pointers, with a skip length of v/P, as sug-
gested in Section 2.3.

Introduction to Information Retrieval Sec. 2.3

Homework # 2(b)

= Fast phrase querying with combined indexes
(Williams, Zobel, Bahle 2004)

= Efficient phrase querying with an auxiliary index
(Bahle, Williams, Zobel 2002)

= A skip list cookbook (Pugh 1990)

= Read these articles and submit one page summary
for each of them. It can happen | will ask about it
some day.

Introduction to Information Retrieval Sec. 2.4

Positional postings and phrase queries

= Phrase queries

* To answer queries such as “stanford university” — as a
phrase
= Sentence “l went to university at Stanford” is not a match.

= Sentence “The inventor Stanford Ovshinsky never went to
university” is not a match.

= Phrase queries has proven easily understood by users;

" For this, it no longer suffices to store only <term : docs>
entries

Introduction to Information Retrieval Sec. 2.4.1

A first attempt: Biword indexes

" |[ndex every consecutive pair of terms in the text as a
phrase

" For example the text “Friends, Romans, Countrymen”
would generate the biwords

= friends romans
" romans countrymen

= Each of these biwords is now a dictionary term and
two-word phrase query-processing is now
immediate.

Introduction to Information Retrieval Sec. 2.4.1

Longer phrase queries

" Longer phrases are processed as we did with wild-
cards:

= stanford university palo alto can be broken into the
Boolean query on biwords:

= stanford university AND university palo AND palo alto

= Without the docs, we cannot verify that the docs
matching the above Boolean query do contain the
actual phrase words in a sequence. They can be at
dispersed locations in a doc resulting occurrence of
given phrase positively while it is non-existing.

‘é’,”x
Can have false positives!

Introduction to Information Retrieval Sec. 2.4.1

Extended biwords

= Parse the text using part-of-speech-tagging (POST).
= Bucket the terms into Nouns (N) and articles/prepositions (X).

= Call any string of terms of the form NX*N an extended
biword.

= Fach such extended biword is now made a term in the
dictionary.

= Example: catcher in the rye
N X X N
" Query processing: parse it into N’s and X’'s
= Segment query into enhanced biwords
= Look up in index: catcher rye

Introduction to Information Retrieval Sec. 2.4.1

Issues for biword indexes

= False positives, as noted before

" |[ndex blowup due to bigger dictionary
= |nfeasible for more than biwords

= Biword indexes are not the standard solution but can
be part of a compound strategy

Introduction to Information Retrieval Sec. 2.4.1

Positional indexes

= Biword index is not the standard solution.

to, 993427:
(1,6: (7,18,33,72,86,231);
2,5: (1, 17,74,222, 255),'
4,5: <8, 16, 190, 429, 433),'
5,2: (363,367);
7,3: (13,23,191);...)
be, 178239:
(1, 2 (17, 25);
4,5: (17,191, 291, 430, 434);
5,3: (14,19,101);...)

» Figure 2.11 Positional index example. The word to has a document frequency
993,477, and occurs 6 times in document 1 at positions 7, 18, 33, etc.

Introduction to Information Retrieval Sec. 2.4.1

Positional indexes

= Suppose the postings lists for to and be are as in Figure 2.11, and the
qguery is “to be or not to be”.

= The postings lists to access are: to, be, or, not. We will examine
intersecting the postings lists for to and be. We first look for documents
that contain both terms e.g. 1, 4, and 5.

= to, 993427:
(1, 6:<(7, 18, 33, 72, 86, 231);
4,5:(8, 16, 190, 429, 433);
5,2: (363, 367);

= be, 178239:
(1, 2:{17, 25);

4,5:<17, 191, 291, 430, 434);
5,3:(14, 19, 101); ...,

Introduction to Information Retrieval Sec. 2.4.1

Positional indexes

= Then, we look for places in the lists where there is an
occurrence of be with a token index one higher than a
position of to,

= to, 993427:

4,5:¢8, 16, 190, 429, 433);
= be, 178239:
4,5:<17, 191, 291, 430, 434);

Introduction to Information Retrieval Sec. 2.4.1

Positional indexes

= and then we look for another occurrence of each word with
token index 4 higher than the first occurrence. In the above
lists, the pattern of occurrences that is a possible match is:

= to, 993427:
4,5: (36,1906, 429, 433);

cr)

= be, 178239:
4, 5: (3191430, 434);

cr)

Introduction to Information Retrieval Sec. 2.4.1

Positional indexes

= Same concept within kK word proximity searches, like
= employment /3 place
= Here, /k means “within k words of (on either side)”.

Clearly, positional indexes can be used for such
gueries; bi-word indexes cannot.

= Figure 2.12 an algorithm for satisfying within kK word
proximity searches;

Introduction to Information Retrieval Sec. 2.4.1

Positional indexes

POSITIONALINTERSECT(py, p2, k)

1 answer «— ()
2 while p; # NIL and py # NIL
3 doifdocID(p1) = docID(p3)
4 then! « ()
5 pp1 < positions(p;)
6 pp2 « positions(pz)
7 while pp; # NIL
8 do while pp, # NIL
9 do if [pos(pp1) — pos(pp2)| <k
10 then ADD(I, pos(pp2))
11 else if pos(pp2) > pos(ppy)
12 then break
13 pp2 « next(ppz)
14 while ! # () and |I[0] — pos(pp1)| > k
15 do DELETE(![0])
16 for each ps €|
17 do ADD(answer, (docID(p1), pos(pp1), ps))
18 pp1 « next(pp1)
19 p1 « next(p1)
20 p2 < next(pa)
21 else if docID(p1) < docID(p3)
22 then p; « next(p;)
23 else p; « next(py)

24 return answer

= https://gist.github.com/pjddev/33fdaafc4205b927642927193bbf1f3b

Introduction to Information Retrieval Sec. 2.4.2

Positional indexes

= Positional index size
= You can compress position values/offsets: we’ll talk about
that later in next lectures.
= Nevertheless, a positional index expands postings storage
substantially

= Nevertheless, a positional index is now standardly used
because of the power and usefulness of phrase and
proximity queries ... whether used explicitly or implicitly in

a ranking retrieval system.

Introduction to Information Retrieval Sec. 2.4.2

Positional index size

= Need an entry for each occurrence, not just once per
document

" |ndex size depends on average document size

= Average web page has <1000 terms

= SEC filings, books, even some epic poems (heroic based poems)...
easily 100,000 terms

= Consider a term with frequency 1 in 1000 terms on
average.

Expected Expected entries
Document size postings in positional posting
1000 1 1
100,000 1 100

Introduction to Information Retrieval Sec. 2.4.2

Rules of thumb

= A positional index is 2—4 as large as a non-positional
index

= Positional index size 35-50% of volume of original
text

= Caveat: all of this holds for “English-like” languages

Introduction to Information Retrieval Sec. 2.4.3

Combination schemes

* These two approaches (Positional index and Biword
Index) can be profitably combined

" For particular phrases (“Michael Jackson”, “Britney Spears”) it
is inefficient to keep on merging positional postings lists, even
more so for phrases like “The Who”

= Williams et al. (2004) evaluated a more sophisticated
mixed indexing scheme.

= A typical web query mixture was executed in % of the time of
using just a positional index

" |t required 26% more space than having a positional index
alone

Introduction to Information Retrieval Sec. 2.4.3

Class Exercise

= Exercise 2.9

= Below is a part of index with positions in the form docl: {(posl,pos2,pos3,...); and
doc2: {posl,pos2,...)

" angels: 2 :(36, 174, 252, 651); 4 : {12, 22,102, 432); 7 : {17),;

= fools: 2:41,17,74,222); 4 : {8,78,108,458); 7 : (3,13,23,193);

= fear:2:(87,704,722,901); 4 :(13, 43, 113, 433); 7 : (18, 328, 528);

= in:2:<3,37,76,444,851); 4 : {10,20,110,470,500); 7 : <5,15,25,195);

= rush: 2:42,66,194,321,702); 4 : {9,69,149,429,569); 7 : <4,14,404);

= to:2:<47, 86, 234,999); 4 : {14, 24, 774,944); 7 : {199, 319, 599, 709);

= tread: 2 :(57,94, 333); 4 : (15, 35, 155); 7 : <20, 320);

= where: 2:(67, 124,393, 1001); 4 : <11, 41, 101, 421, 431); 7 : <15, 35, 735);

= The following terms are phrase queries. Which documents correspond to the
following queries and on which positions?

= a) "fools rush in”
= b) "fools rush in" AND "angels fear to tread".
= ¢) The index is incorrect. How?

Introduction to Information Retrieval Sec. 2.4.3

Class Exercise

= Exercise 2.9 (Solution)

= |n order to retrieve the query it is necessary that the words are in a sequence. That
is, if the word angels is in document 1 on position 3, then the word fear have to be
in the same document on the position 4.

= For the exercise a) we calculate all possible positions of the phrase.

= Word fools appears in document 2 on positions {1, 17, 74, 222). That means
that the word rush has to appear on positions <2, 18, 75, 223) and the word in

on positions (3, 19, 76, 224). Similar process is applied on documents 4 and 7
which retrieves the requested results.

= Fools:2:<1,17,74,222); 4 :(8,78,108,458); 7 :(3,13,23,193);
= rush: 2:¢2,66,194,321,702); 4:¢9,69,149,429,569); 7 :<4,14,404);
= in: 2:(3,37,76,444,851); 4:10,20,110,470,500); 7 : <5,15,25,195);

= RESULT: <doc2, doc4, doc7>

Introduction to Information Retrieval Sec. 2.4.3

Class Exercise

= Exercise 2.9 (Solution)
= For the exercise b) we find the requested positions for also the term angels
fear to tread.

= angels: 2 :(36, 174, 252, 651); 4:<12,22,102,432); 7:{17);

= fear: 2:<(87,704,722,901); 4:<13,43,113,433); 7:<18, 328,
528);

" to: 2:4(47,86,234,999); 4 :<14, 24,774,944); 7 :{199, 319, 599,
709);

= tread: 2 : <57, 94, 333); 4 : (15, 35, 155); 7 : <20, 320);

= RESULT: <doc1>
= They appear in the correct order in doc4: {<12, 13, 14, 15)}. Taking the
first part from a), we only check whether the results overlap {doc2,
doc4, doc7} N {doc4} = doc4.
= For the exercise ¢) we need to have a look into document 7, where on
position 15 are two terms in and where.

Introduction to Information Retrieval

Homework #2(c)

" Exercise 2.10 [*]
Consider the following fragment of a positional index with the format:

word: document: (position, position, . ..); document: (position, ...)

Gates: 1: (3); 2:
IBM: 4: (3); 7:
Microsoft: 1:

(6); 3: (2,17); 4: (1);
(14),
1); 2: (1,21); 3: (3); 5: (16,22,51);

The /k operator, word1 /k word2 finds occurrences of word1 within k words of word2 (on
either side), where k is a positive integer argument. Thus k = 1 demands that word1
be adjacent to word2.

a. Describe the set of documents that satisfy the query Gates /2 Microsoft.

b. Describe each set of values for k for which the query Gates /k Microsoft returns a
different set of documents as the answer.

56

Introduction to Information Retrieval

Homework #2(d)

= Exercise 2.13 [*x]

= Suppose we wish to use a postings intersection procedure to determine
simply the list of documents that satisfy a /k clause, rather than returning
the list of positions, as in Figure 2.12 (page 42). For simplicity, assume k >
2. Let L denote the total number of occurrences of the two terms in the
document collection (i.e., the sum of their collection frequencies). Which
of the following is true? Justify your answer.

a. The merge can be accomplished in a number of steps linearin L and
independent of k, and we can ensure that each pointer moves only
to the right.

b. The merge can be accomplished in a number of steps linear in L and
independent of k, but a pointer may be forced to move non-
monotonically (i.e., to sometimes back up)

c. The merge can require kL steps in some cases.

57

Introduction to Information Retrieval

Homework #2(e)

= Exercise 2.14 [*x]

= How could an IR system combine use of a positional index and use of stop
words? What is the potential problem, and how could it be handled?

58

Introduction to Information Retrieval

Homework #2(f)

= Visit the following link and build a positional index based
search engine and then submit the report with output.

= http://www.elemarjr.com/en/2018/02/phrase-queries-
and-positional-indexes-in-c/

= Presentation is due at any time during class hours.

59

Introduction to Information Retrieval

Articles to be Read

= Spoken language identification:
= Hughes, Baden, Timothy Baldwin, Steven Bird, Jeremy Nicholson, and
Andrew MacKinlay. 2006. Reconsidering language identification for
written language re- sources. In Proc. International Conference on
Language Resources and Evaluation, pp. 485—-488.

= Discussion of the positive and negative impact of stemming :

= Hollink, Vera, Jaap Kamps, Christof Monz, and Maarten de Rijke. 2004.
Monolingual document retrieval for European languages. IR 7(1):33—
52.

= Skip pointer extended technique:

= Boldi, Paolo, and Sebastiano Vigna. 2005. Compressed perfect
embedded skip lists for quick inverted-index lookups. In Proc. SPIRE.
Springer.

= Strohman, Trevor, and W. Bruce Croft. 2007. Efficient document
retrieval in main memory. In Proc. SIGIR, pp. 175—-182. ACM Press.

60

Introduction to Information Retrieval

Homework (Not for submission)

= Visit the following link; Execute the source code; See the
errors in the output and try to remove it.

= https://github.com/manning/MergeAlgorithms

61

