Mid Term Examination/Quiz
For MSCS: Natural Language Processing (CSEC-720)
For PhD: Special Topics in Natural Language Processing (CSEC-801)

(Time 01:30 hours)
	Total Marks: 30
	Course Code: CS-5840



Q1 (a): With respect to logistics regression, derive the cross entropy loss function from single observation x to the whole training set by starting from the following equation p(y|x) = yˆy(1-yˆ)1-y and then finally define the cost function for the whole dataset. 
[Hint] Choose the parameters w, b that maximize the log probability of the true y labels in the training data given the observations x. The resulting loss function is the negative log likelihood loss, generally called the cross entropy loss. 		[5]

Sol:
	· Let’s derive this loss function, applied to a single observation x.
· We’d like to learn weights that maximize the probability of the correct label p(y|x). Since there are only two discrete outcomes (1 or 0), this is a Bernoulli distribution, which can be expressed by probability density function  on next slide (keeping in mind that if y=1, Eq. 5.8 simplifies to yˆ; if y=0, Eq. 5.8 simplifies to 1-yˆ): 
[image: ]
[image: ]
· Now, plug in the definition of yˆ = σ(w·x)+b: 
[image: ]
· The negative log of this probability is a convenient loss metric since it goes from 0 (negative log of 1, ‘0’ no loss) to infinity (negative log of 0, infinite loss). 
· This loss function also insures that as probability of the correct answer is maximized, the probability of the incorrect answer is minimized; since the two sum to one, any increase in the probability of the correct answer is coming at the expense of the incorrect answer. 
· Let’s now extend Eq. 5.10 from one example to the whole training set: assuming x(i) and y(i) mean the ith training features and training label, respectively. We make the assumption that the training examples are independent: 
[image: ]
· Cost function for the whole dataset as the average loss for each example: 
[image: ]






(b): Calculate a single step of the gradient descent algorithm using the following equation θt+1 = θt - η ∇θ L(f (x(i); θ) , y(i))  with initial weights (w1=w2  = b = 0), eta (η = 0.1) and y = 1 with only two features: 						[5]
· x1  = 3 (count of positive lexicon words)  
· x2  = 2 (count of negative lexicon words)  
Sol:
	· Let’s walk though a single step of the gradient descent algorithm for a single observation x, whose sentiment value is y = 1 or 0, and with only two features: 
· x1  = 3 (count of positive lexicon words) 
· x2  = 2 (count of negative lexicon words) 
· Assume the initial weights and bias in θ0 are all set to 0, and the initial learning rate η is 0.1: 
· w1=w2=b = 0 and η = 0.1 
[image: ]
[image: ] 
[image: ][image: ]
[image: ]
· So after one step of gradient descent, the weights θ1 have shifted to θ2 as: 
w1 = .15, w2 =.1,and b=.05






Q2 (a): Consider the following tabular data and calculate the followings.		[5]
	[image: ]


1. Provide the equation for Cosine similarity.
2. Calculate Cosine similarity for all row pairs and then identify which pairs are more similar than others.
3. Draw the graph for visualization of similarity.
Sol:
	[image: ]
vi is the count for word v in context i 
wi is the count for word w in context i. 
[image: ]
Cos(v,w) is the cosine similarity of v and w
· [image: ]
· -1: vectors point in opposite directions 
· +1:  vectors point in same directions
· 0: vectors are orthogonal (right angle, independent)
· Frequency is non-negative, so  cosine range 0-1
[image: ]
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[image: ]
[image: ]




(b): By assuming the embedding size N = 10. Consider the following data and calculate the forward pass for Neural Network based model Word2Vec where Xk is the center word (observation word) while Y(c=1) and Y(c=2) are the two context words for the pass #1. 								[5]
[Hint] Calculate the hidden layer, output layer and softmax while input and output embedding matrices are randomly initialized.

	Corpus: Natural language processing and machine learning is fun and exciting



		#1
	Natural
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	and
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	Xk
	Y(c=1)
	Y(c=2)
	 
	 
	 
	 
	 
	 
	 






		Weight 1 -W1
	
	
	
	
	
	
	
	

	0.236
	-0.962
	0.686
	0.785
	-0.454
	-0.833
	-0.744
	0.677
	-0.427
	-0.066

	-0.907
	0.894
	0.225
	0.673
	-0.579
	-0.428
	0.685
	0.973
	-0.070
	-0.811

	-0.576
	0.658
	-0.582
	-0.112
	0.662
	0.051
	-0.401
	-0.921
	-0.158
	0.529

	0.517
	0.436
	0.092
	-0.835
	-0.444
	-0.905
	0.879
	0.303
	0.332
	-0.275

	0.859
	-0.890
	0.651
	0.185
	-0.511
	-0.456
	0.377
	-0.274
	0.182
	-0.237

	0.368
	-0.867
	-0.301
	-0.222
	0.630
	0.808
	0.088
	-0.902
	-0.450
	-0.408

	0.728
	0.277
	0.439
	0.138
	-0.943
	-0.409
	0.687
	-0.215
	-0.807
	0.612

	0.593
	-0.699
	0.020
	0.142
	-0.638
	-0.633
	0.344
	0.868
	0.913
	0.429

	0.447
	-0.810
	-0.061
	-0.495
	0.794
	-0.064
	-0.817
	-0.408
	-0.286
	0.149

	9 x 10
	
	
	
	
	
	
	
	
	






		Weight 2 - W2
	
	
	
	
	
	
	

	-0.868
	-0.406
	-0.288
	-0.016
	-0.560
	0.179
	0.099
	0.438
	-0.551

	-0.395
	0.890
	0.685
	-0.329
	0.218
	-0.852
	-0.919
	0.665
	0.968

	-0.128
	0.685
	-0.828
	0.709
	-0.420
	0.057
	-0.212
	0.728
	-0.690

	0.881
	0.238
	0.018
	0.622
	0.936
	-0.442
	0.936
	0.586
	-0.020

	-0.478
	0.240
	0.820
	-0.731
	0.260
	-0.989
	-0.626
	0.796
	-0.599

	0.679
	0.721
	-0.111
	0.083
	-0.738
	0.227
	0.560
	0.929
	0.017

	-0.690
	0.907
	0.464
	-0.022
	-0.005
	-0.004
	-0.425
	0.299
	0.757

	-0.054
	0.397
	-0.017
	-0.563
	-0.551
	0.465
	-0.596
	-0.413
	-0.395

	-0.838
	0.053
	-0.160
	-0.164
	-0.671
	0.140
	-0.149
	0.708
	0.425

	0.096
	-0.995
	-0.313
	0.881
	-0.402
	-0.631
	-0.660
	0.184
	0.487

	10 x 9
	 
	 
	 
	 
	 
	 
	 
	 





Sol:
	[image: ]
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	Appendix - Softmax
	 
	 
	 
	 
	 
	 

	 
	
	
	
	
	
	
	 

	 
	
	Output Layer
	Softmax
	 

	#
	Token
	
	Unnormalized Probabilities
	Normalized Probabilities
	 

	0
	natural
	1.258
	3.517
	 
	0.218
	 
	 

	1
	language
	-1.369
	0.254
	 
	0.016
	 
	 

	2
	processing
	-1.828
	0.161
	 
	0.010
	 
	 

	3
	and
	1.196
	3.308
	 
	0.205
	 
	 

	4
	machine
	0.545
	1.724
	 
	0.107
	 
	 

	5
	learning
	1.113
	3.043
	 
	0.189
	 
	 

	6
	is
	1.333
	3.794
	 
	0.235
	 
	 

	7
	fun
	-1.528
	0.217
	 
	0.013
	 
	 

	8
	exciting
	-2.335
	0.097
	 
	0.006
	 
	 

	 
	 
	 
	 
	 
	 
	 
	 






Q3 (a): Design the algorithm for the following neural language model.		[5]
	[image: ]


Sol:
	[image: ]



(b): Differentiate the following activation functions w.r.t Neural Network. 		[5]
1. Sigmoid
2. Tanh
3. ReLU
Sol: 
	[image: ]
[image: ]
[image: ]
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12 CHAPTER 5 • LOGISTIC REGRESSION



5.4.3 Working through an example
Let’s walk though a single step of the gradient descent algorithm. We’ll use a sim-
plified version of the example in Fig. 5.2 as it sees a single observation x, whose
correct value is y = 1 (this is a positive review), and with only two features:



x1 = 3 (count of positive lexicon words)
x2 = 2 (count of negative lexicon words)



Let’s assume the initial weights and bias in q 0 are all set to 0, and the initial learning
rate h is 0.1:



w1 = w2 = b = 0
h = 0.1



The single update step requires that we compute the gradient, multiplied by the
learning rate



q t+1 = q t �h—q L( f (x(i);q),y(i))



In our mini example there are three parameters, so the gradient vector has 3 dimen-
sions, for w1, w2, and b. We can compute the first gradient as follows:
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Now that we have a gradient, we compute the new parameter vector q 2 by mov-
ing q 1 in the opposite direction from the gradient:



q 2 =



2



4
w1
w2
b



3



5�h



2



4
�1.5
�1.0
�0.5



3



5=



2



4
.15
.1
.05



3



5



So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.



Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.



5.5 Regularization



Numquam ponenda est pluralitas sine necessitate
‘Plurality should never be proposed unless needed’



William of Occam
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Now that we have a gradient, we compute the new parameter vector q 2 by mov-
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.



Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.
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So after one step of gradient descent, the weights have shifted to be: w1 = .15,
w2 = .1, and b = .05.



Note that this observation x happened to be a positive example. We would expect
that after seeing more negative examples with high counts of negative words, that
the weight w2 would shift to have a negative value.
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12 CHAPTER 6 • VECTOR SEMANTICS



~a ·~b = |~a||~b|cosq
~a ·~b
|~a||~b|



= cosq (6.9)



The cosine similarity metric between two vectors~v and ~w thus can be computedcosine



as:



cosine(~v,~w) =
~v ·~w
|~v||~w| =



NX



i=1



viwi



vuut
NX



i=1



v2
i



vuut
NX



i=1



w2
i



(6.10)



For some applications we pre-normalize each vector, by dividing it by its length,
creating a unit vector of length 1. Thus we could compute a unit vector from ~a byunit vector
dividing it by |~a|. For unit vectors, the dot product is the same as the cosine.



The cosine value ranges from 1 for vectors pointing in the same direction, through
0 for vectors that are orthogonal, to -1 for vectors pointing in opposite directions.
But raw frequency values are non-negative, so the cosine for these vectors ranges
from 0–1.



Let’s see how the cosine computes which of the words apricot or digital is closer
in meaning to information, just using raw counts from the following simplified table:



large data computer
apricot 2 0 0
digital 0 1 2



information 1 6 1



cos(apricot, information) =
2+0+0p



4+0+0
p



1+36+1
=



2
2
p



38
= .16



cos(digital, information) =
0+6+2p



0+1+4
p



1+36+1
=



8p
38
p



5
= .58 (6.11)



The model decides that information is closer to digital than it is to apricot, a
result that seems sensible. Fig. 6.7 shows a visualization.



6.5 TF-IDF: Weighing terms in the vector



The co-occurrence matrix in Fig. 6.5 represented each cell by the raw frequency of
the co-occurrence of two words.



It turns out, however, that simple frequency isn’t the best measure of association
between words. One problem is that raw frequency is very skewed and not very
discriminative. If we want to know what kinds of contexts are shared by apricot and
pineapple but not by digital and information, we’re not going to get good discrimi-
nation from words like the, it, or they, which occur frequently with all sorts of words
and aren’t informative about any particular word.



It’s a bit of a paradox. Word that occur nearby frequently (maybe sugar appears
often in our corpus near apricot) are more important than words that only appear
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= The forward pass of this neural LM (Fig. 7.13)
Select three embeddings from E: Given the three previous words, we look
up their indices, create 3 one-hot vectors, and then multiply each by the em-
bedding matrix E. Consider w,_3. The one-hot vector for “the” is (index 35) is
multiplied by the embedding matrix E. to give the first part of the first hidden
layer, called the projection layer. Since each row of the input matrix £ is just
an embedding for a word, and the input is a one-hot columnvector .v; for word
Vi, the projection layer for input w will be E.x; = ¢;, the embedding for word i.
We now concatenate the three embeddings for the context words.

. Multiply by W: We now multiply by W (and add b) and pass through the

rectified linear (or other) activation function to get the hidden layer /.

. Multiply by U: / is now multiplied by U
. Apply softmax: After the softmax. each node / in the output layer estimates

the probability P(w, = i|w,_j.w,_2.w,_3)
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Neural Units

= Activation Function y=a= f(2)

= In practice, the sigmoid is not commonly used as
an activation function.

= A function that is very similar but almost always
better is the tanh function.

= Itis a variant of the sigmoid y=—
that ranges from -1 to +1. e t+e

= The simplest activation function, and perhaps the
most commonly used, is the rectified linear unit,

also called the RelLU.

« Itis just the same as x when x is positive,
and 0 otherwise.

et —e ¢

y = max(x,0)
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= In the sigmoid or tanh functions, very high values
of z result in values of y that are saturated, i.e.,
extremely close to 1, which causes problems for
learning. ReLU does not have this problem, since
the output of values close to 1 also approaches 1
in a nice gentle linear way.

= By contrast, the tanh function has the nice
properties of being smoothly differentiable and
mapping outlier values toward the mean.
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Now we take the log of both sides for numeric stability, etc.

Eq. 5.9 describes a maximum log likelihood (loss function). In
order to minimize this loss function, we’ll just flip the sign on Eq.
5.9. The result is the cross-entropy loss L :
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Lce(3,y) = —logp(ylx) = —[ylogy+ (1—y)log(l—3)] (5.10)
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