Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science & IT,
University of Sargodha, Sargodha, 40100, Pakistan

gaiser.abbas@uos.edu.pk
Material partially adopted from the following link:

http://www.cse.unl.edu/~goddard/Courses/CSCE310J

mailto:qaiser.abbas@uos.edu.pk

Edit Distance

* DNA Sequence Comparison: First Success Story

— Finding sequence similarities with genes of
known function is a common approach to infer a
newly sequenced gene’s function

— In 1984 Russell Doolittle and colleagues found
similarities between cancer-causing gene and
normal growth factor (PDGF) gene.

Score =
Identit
Strand
Query:
Sbjct:
Query:
Sbjct:
Query:
Sbjct:
Query:
Sbjct:
Query:

Sbjct:

06/02/2015

Edit Distance

248 bits (129), Expect = le-63

ies

= 213/263 (80%), Gaps = 34/263 (12%)

= Plus / Plus

l61

481

218

540

278

587

335

646

383

706

atatcaccacgtcaaaggtgactccaactcca---ccactccattttgttcagataatgce

atatcaccacgtcaaaggtgactccaact-tattgatagtgttttatgttcagataatgce

ccgatgatcatgtcatgcagctccaccgattgtgagaacgacagcgacttcecgtceccage

ccgatgactttgtcatgcagctccaccgattttg-g-—----------- ttccgtecccage

c-gtgcc--aggtgctgcctcagattcaggttatgeccgctcaattegetgegtatatege

caatgacgta-gtgctgcctcagattcaggttatgccgctcaattecgetgggtatatcge
ttgctgattacgtgcagctttcecttcaggecggga-----==-===- ccagccatccgtc
LEEEEETEEETEE T Err e e e e e NERRRRRRRERY

ttgctgattacgtgcagctttcecttcaggecgggattcatacagecggeccagecatcecegtce

ctccatatc-accacgtcaaagg 404

217

539

2717

586

334

645

382

705

NRRRRRRARR AN Example BLAST alignment

atccatatcaaccacgtcaaagg 728

Edit Distance

Problem: Given two strings of size m, n and set of

operations substitution (S), insert (I) and delete (D) all
at equal cost. Find minimum number of edits

(operations) required to convert one string into
another.

Minimum Edit Distance

The minimum edit distance between two strings is the minimum number of edit
operations (insert, delete, substitution) needed to transform one string into
another.

For example the gap between “intention” and “execution” is 5 operations, which
can be represented in three ways as follows:

i tion
Trace //// || | |
t 1 on

. intenetilon
Alignment

e execution

delete i intention
elete 1 —»
. ntentdion
Operation substituten by e —
List substitute tby x — etention
insert u exention
—_
substitute n by ¢ —» exenutio
executio

Figure 5.4 Three methods for representing differences between sequences
(after Kruskal (1983))

Minimum Edit Distance

e Applications

— could be used for multi-typo correction

— used in Machine Translation Evaluation (MTEval)

* Cost and Weight models

— Levenshtein (Cost)

* insertion, deletion and substitution all have unit cost

— Levenshtein (alternate) (Cost)

* insertion, deletion have unit cost
* substitution is twice as expensive

* substitution = one insert followed by one delete

— Typewriter (Weight)

06/02/2015

* insertion, deletion and substitution all have unit cost

* modified by key proximity

“[1]2]s]4]s5]6]7[8]o]0]-]=]

[olwle[r]T]v]ul1]ofr|]3]

[alslplFlalnlafx)i]:]~]

[zlx]clvielnim[-] -1/]
1 [1

Minimum Edit Distance

* Dynamic Programming
— divide-and-conquer
* to solve a problem we divide it into sub-problems
— sub-problems may be repeated
* don’t want to re-solve a sub-problem the 2nd time around

— idea: put solutions to sub-problems in a table
e and just look up the solution 2nd time around, thereby saving time
* memoization

Minimum Edit Distance

* Levenshtein (1% Version)

* D(i,j) = score of best alignment
froms;..s;to t;..t;

* Min=

06/02/2015

(

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1//delete

P |[A [R |K
0/1]2]3]|4

s (1123 4

P (21]2]3]|4

A |32 "1 123

K [4[3]2]2[2

E |5|4[3]3 ta_j

06/02/2015

Minimum Edit Distance

function MIN-EDIT-DISTANCE(targer, source) returns min-distance

n<— LENGTH(target)
m«— LENGTH(source)
Create a distance matrix distancefn+1,m+1]
Initialize the zeroth row and column to be the distance from the empty string
distance[0,0] =0
for each column i from | to » do
distance[i,0] —distanceli-1 0] + ins-cost(targei[i])
for each row j from | to m do
distance[0,j] —distance[0 j-1] + del-cost(source[j])
for each column i from | to » do
for each row j from | to m do
distance[i, j]— MIN(distance[i—1,j] + ins-cost(targeti_1),
distanceli—1, j—1]+ sub-cost(source;_y, Jtargeti_y),
distanceli, j—1)] + del-cost(source j_1))
return disiance[nm)

The minimum edit distance algorithm, an example of the class of dynamic pro-
gramming algorithms. The various costs can either be fixed (e.g., ¥x,inscost(x) = 1) or can
be specific to the letter (to model the fact that some letters are more likely to be inserted than
others). We assume that there is no cost for substituting a letter for itself (i.e., sub-cost{x,x) =0).

Minimum Edit Distance

function MIN-EDIT-DISTANCE(targer, source) returns min-distance

~ N
n<— LENGTH(target)

m— LENGTH(source)
Create a distance matrix distance[n+1{,m+1] Q)(1) each

Initialize the zeroth row and column to be the distance from the empty string
\ distance[0,0] =0

* for each column i from | to » do
distance[i,0] —distanceli-1 0] + ins-cost(targei[i])

A

i for each row j from | to m do 01 n) +O(m)
\ distance[0,j] —distance[0 j-1] + del-cost(source[j])
for each column ¢ from | to n do =
for each row j from | to m do
< distance[i, j]— MIN(distance[i—1,j] + ins-cost(targeti_1), O(nm)
distanceli—1, j—1]+ sub-cost(source;_y, Jtargeti_y),
\ distanceli, j—1)] + del-cost(source j_1)) J

return disiance[nm)

The minimum edit distance algorithm, an example of the class of dynamic pro-
gramming algorithms. The various costs can either be fixed (e.g., ¥x,ins<cost(x) = 1) or can
be specific to the letter (to model the fact that some letters are more likely to be inserted than
others). We assume that there is no cost for substituting a letter for itself (i.e., sub-cost{x,x) =0).

06/02/2015 10

v

Y

Minimum Edit Distance

* Levenshtein (2"d Version)

distance[i — 1, j| +ins-cost{target;_;)
distanceli, j] = min distance[i — 1, j — 1] +sub-cost(source ;_, ,target;_,)
distanceli. j — 1] +del-cost(source;_,))

n 9 8 9 10 11 12 11 10 9 8
0 8 7 8 9 10 11 10 9 8 9
i 7 6 7 8 9 10 9 8 9 10

t O 5 6 7 8 9 8 9 10 11
n 5] 4 5 6 7 8 9 10 11 10
¢ + 3 4 5 6 7 8 9 10 Y
t 3 4 5 6 7 8 7 3 9 8
n 2 3 4 5 6 7 8 7 8 7
i ! 2 3 4 5 6 7 6 7 8

0 I 2 3 4 L 4 7 8 9
i ¢ X ¢ ¢ u t i 0 n

QTR PAY Computation of minimum edit distance between intention and execution with the
algorithm of Fig. 3.25, using Levenshtein distance with cost of | for insertions or deletions, 2 for
substitutions. In italics are the initial values representing the distance from the empty string.

06/02/2015 11

Knapsack Problem

0000000000

Knapsack Problem

Given some items(boxes), pack the knapsack to get the
maximum total value (dollars). Each item has some weight
(kg) and some value (dollars). Total weight that we can carry is
no more than some fixed number W (15kg). So we must
consider weights of items as well as their values.

3 Yellow, 3 Grey

Knapsack Problem

* Two versions of the problem:
1. 0-1 knapsack problem
* |tems are indivisible; you either take an item
or not. (Dynamic Approach)
2. Fractional knapsack problem
* Items are divisible: you can take any fraction
of an item. (Greedy Approach)

0-1 Knapsack Problem

* Given a knapsack with maximum capacity W, and a set S
consisting of n items

* Each item i has some weight w; and benefit value b; (all
w; and W are integer values)

* Problem: How to pack the knapsack to achieve maximum
total value of packed items?

max » b. subjectto » w.<W
€T T

— The problem 1s called a “0-1” problem, because each
item must be entirely accepted or rejected.

0-1 Knapsack Problem

* Brute-force approach:
— For n items, there are 2" possible combinations.

— Go through all combinations and find the one with
maximum value and with total weight < W

— Running time will be O(2")

 Dynamic programming approach:

— Can do better using dynamic programming by
identifying the sub-problemes.

— Let’s try this:
If items are labeled 1..n, then a subproblem would be

to find an optimal solution for
Sk = {items labeled 1, 2, .. k}

Defining a Subproblem

If items are labeled 1..n, then a subproblem would

be to find an optimal solution for S, = {items labelled
1, 2, .. k}

This is a reasonable subproblem definition.

The question is: can we describe the final solution
(S,,) in terms of subproblems (S,)?

Unfortunately, we can’t do that.

Defining a Subproblem

w, =2
b, =3

w, =4
b,=5

W3 =5
b, =8

w,=3
b,=4

Max weight: W = 20
For S,:

Total weight: 14;

Maximum benefit: 20

w, =2 w,=4 | w;=5 | w,=9
b,=3| b,=5 | b;=8 | b.=10
For Sg:

Total weight: 20
Maximum benefit: 26

Weight Benefit
Item Wi bi
#

1 2 3

Sef | 2 3 4
3 4 5

4 5 8

5 9 10

Solution for S, is
not part of the
solution for S.!!!

1<

06/02/2015

18

Defining a Subproblem

As we have seen, the solution for S, is not part of the
solution for S:

So our definition of a subproblem is flawed and we
need another one!

Let’s add another parameter: w, which will represent
the exact weight for each subset of items

The subproblem then will be to compute B[k, w]

Defining a Subproblem

Recursive formula for subproblems:
B[k -1,w] if w, >w

Blk,w] =
max{ B[k -1,w],B[k -1,w—-w,]+ b, } else

It means, that the best subset of S, that has total
weight w 1s:
1) the best subset of S, _; that has total weight w, or

2) the best subset of S, ; that has total weight w-w, plus the
item K

06/02/2015

Defining a Subproblem

Bk -1,w] if w,>w
Blk,w] =
max{ B[k -1,w],Blk -1,w-w,]+ b, } else

¢ The best subset of §, that has the total weight w,
either contains item £ or not.

¢ First case: w,>w. Item k can’t be part of the
solution, since if it was, the total weight would be
> w, which 1s unacceptable.

¢ Second case: w, <= w. Then the item & can be in
the solution, and we choose the case with greater
value.

06/02/2015

21

06/02/2015

0-1 Knapsack Problem

forw=0toW
B[O,w] =0
fori=1ton
B[1,0] =0
fori=1ton
forw=0toW
if w, <=w //item 1 can be part of the solution
it b, + B[1-1,w-w,] > B[i-1,w]
B[i,w] = b, + B[1-1,w- w]
else
B[i,w] = BJ[i-1,w]
else B[1,w] =B[i-1,w] //w,>wW

Running Time is O(nW), while the brute force O(2")

22

0-1 Knapsack Problem

e Let’s run our algorithm on the following data:

 n=4(# of elements)
W =5 (max weight)

* Elements (weight, benefit):
_(213)1 (314)1 (415)1 (5;6)

0-1 Knapsack Problem

e Let’s run our algorithm on the following data:

e Nn=4 (# of eIementS) \W o 1 2 3

4

5

W =5 (max weight) ol oo oo

0

 Elements (weight, benefit) ;

—(2,3), (3,4), (4,5), (5,6) 3

4

forw=0toW
B[O,w] =0

06/02/2015

0-1 Knapsack Problem

W o 1 2 3 4 5
0| 0 o |0 |0 | O
1] 0
2 | 0
31 0
4| 0

fori=1ton
B[10]=0

25

06/02/2015

0-1 Knansack Problem

Items:
1: (2,3)
2:(34)
. 3: (4.5)
W.o 1 2 3 4 5 =1 4:(506)
(1) g ig 0 0 0 0 bi=3
w.=2
2| 0 W‘=)
5|0 w-w; =-1
4 0

if w, <= w // item 1 can be part of the solution
if b, + B[i-1,w-w,] > B[i-1,w]
B[i,w] = b, + B[i-1,w- w]
else
B[i,w] = B[i-1,w]
else B[i,w] =B[i-1,w] //w,>w

26

06/02/2015

0-1 Knapsack Problem

\WWo 1 2 3 4 5
0] 0~Q |0 | 0 |0 | O
1| o] o ™3

2| 0

3| 0

4| 0

if w; <= w // item i can be part of the solution
if b, + B[i-1,w-w;] > B[i-1,w]
B[i,w] = b, + B[i-1,w- w;]
else
B[i,w] = B[i-1,w]
else B[i,w] =B[i-1,w] // w;>w

Items:
1: (2,3)
2:(34)
3: (4,5

=1 4:(5,6)

b=3

W=

W=

w-w; =0

27

06/02/2015

0-1 Knapsack Problem

Wo 1 2 3 4 5
0/ 0| 0~0 |0 |0 |oO
10| 0 | 3 ™3

2 | 0

30 0

4 0

if w, <= w // item 1 can be part of the solution
if b, + B[i-1,w-w,] > B[i-1,w]
B[i,w] = b, + B[i-1,w- w,]
else
B[i,w] = B[i-1,w]
else B[i,w] =B[i-1,w] //w,>w

Items:

1: (2,3)
2:(34)
3:(45)
=1 4:(5,6)

w-w; =1

28

0-1 Knapsack Problem

Items:
1: (2,3)
2:(34)
3: (4.,5)

W.oo 1 2 3 4 5 =] 4:(56)

0 0[]0 | 040 [0 |0 |y 5

1] olo |3 |3 ™3 “j:z

2 0 w1=4

i g W-W; =2

if w, <= w // item 1 can be part of the solution
if b, + B[i-1,w-w,] > B[i-1,w]
B[i,w] =b, + B[i-1,w- w,]
else
B[i,w] = B[i-1,w]
else B[i,w] =B[i-1,w] //w,>w

06/02/2015 29

06/02/2015

0-1 Knapsack Problem

\WWo 1 2 3 4 5
0| o 0 | 04+0 | 0
1o o |3 |3 |3 ™3
2 | 0
30 0
4| 0

if w, <= w // item 1 can be part of the solution
if b, + B[i-1,w-w,] > B[i-1,w]
B[i,w] =b, + B[i-1,w- w;]
else
B[i,w] =B[i-1,w]
else B[1,w] =B[i-1,w] //w,>W

Items:
1: (2,3)
2:(34)
3:(4)5)

=1 4:(5,6)

b=3

W=

W=

w-w; =3

30

06/02/2015

0-1 Knapsack Problem

Wo 1 2 3 4 5
ol oo |0 |0 |0 o
1ol o |3 |3]33
200 | 3 | 4 | 4 |7
3000 |3 |4 |5 |7
4100 | 3|4 |5 |W

if w, <= w // item 1 can be part of the solution
if b, + B[i-1,w-w,] > B[i-1,w]

B[i,w] =b, + B[i-1,w- w,]

else
B[i,w] = B[i-1,w]
else B[i,w] =B[i-1,w] //w,>w

Items:
1: (2,3)
2:(34)
3:(4.5)
1=4| 4:(5,6)
b.=6

1

Wi=5
w=35

w- w;=0

31

0-1 Knapsack Problem

e This algorithm only finds the max possible value that
can be carried in the knapsack

* »l.e., the valuein B[n,W]

 To know the items that make this maximum value, an
addition to this algorithm is necessary.

How to find actual Knapsack Items

All of the information we need is in the table.

B[n,W] is the maximal value of items that can be placed
in the Knapsack.

Let i=n and k=W
if B[i,k] 5/B[i-1,k] then
mark the iy, item as in the knapsack
i=i-1, k=k-w,
else

| = i—=1 // Assume the i,, item is not in the knapsack
// Could it be in the optimally packed knapsack?

Items:

1: (2,3
Finding the Items 7. E3 ,4;
3: (4.,5)
W0 1 2 3 4 5 i=4| 4:(56)
ol o| o0 |0 |0 |0 |0 |k=5
1100 | 3|3 |3 | 3 |bs=6
21 01| 0 3 4 4 7 | W=
30 0/| 0 | 3 | 4 |5 |7 |Blkl=7
4l oo |3 | a | s |7 |BudAd=T
i=n, k=W
while 1,k >0

06/02/2015

if B[i k] = B[i—1,k] then
mark the i item as in the knapsack
i=i-1,k=k-w,

else
i=i-1

34

Finding the Items (2)

06/02/2015

Wo 1 2 3 4 5

o000 |0 |0 |0]|oO

100 |3 |3 |33

2000 |3 |4 |4 |7

3000 |3 |4 |5 |[7)

alo]o |3 |45 |\7)
i=n, k=W -
while 1.k >0

if B[i,k] = B[i-1,k] then

else

mark the i item as in the knapsack

i=i-1,k=kw

i=i-1

Items:

1=4

1: (2,3)
2:(34)
3:(4,5)
4: (5,6)

k=35
b.=6

1
Wi=5

Bli,k] =

7

Bli-1,k] =7

35

Items:

1: (2,3
Finding the Items (3) ?- 23:4;
3:(4,5)
W o 1 2 3 4 5 i=3| 4:(56)
olo|lo o |0 |0 | 0 | k5
1 o|lo0 [3 |3 |3 |3 |b=6
2 oo [3|4 |4 [[7)] w=t
3100 | 3 |4 |5 |[\7)]|Blk=7
sl oo |3 a5 |7 |BudA=T
i=n, k=W
while 1.k >0

if B[i,k] = B[i—1,k] then
mark the /" item as in the knapsack
i=i-1,k=k-w,
else
i=i-l
06/02/2015

36

Items:

o 1: (2,3)
Finding the Items (4) 2: (3.4)
. 3:(4,5)
W.o 1 2 3 4 5 i=2| 4:(56)
ol o]0 0o | o0 | o0 9\7 k=5
1| 0] 0 | 3% 3 [(3\]| b=4
@ oo |3 \3\4‘\7]| w=3
3100 |3 |4 |5 |7 |BUk=T
41010 4 |5 Bli-1,k] =3
k-w=2
i=n, k=W
while 1.k >0

if B[i,k] = B[i—1,k] then
mark the i item as in the knapsack
i=i-1,k=k-w,

else
i=i-1

06/02/2015

37

Finding the Items (3)

\W o 1 3 4 5
ol o| o0 [foM O |0 | O
0| 0 [\3/| 3 |3 |3
o0 | 3 | 4 | 4|7
3000 | 3 | 4 |5 |7
al oo |3 |4 |5 |7
i=n, k=W
while 1.,k >0

06/02/2015

else

i=i-I

if B[i,k] = B[i—1,k] then
mark the i item as in the knapsack
i=i-1,k=k-w,

Items:

=1

1: (2,3)
2: (34)
3: (4,5)
4: (5,6)

k=2
b,=3

1

w.=2

Blik] =3
Bli-1,k] =0
k-wz=0

Finding the Items (6)

W o 1 2 3 4 5
0| O 0 0 0 0 0
0 0 3 3 3 3
0 0 3 4 4 7
310 0 3 4 5 7
4 | 0 0 3 4 5 7
i=n, k=W
while 1.k >0

if B[i, k] = B[i—1,k] then
mark the n item as in the knapsack
i=i-1,k=k-w,

else
i=i-1

uuuuuuuuuu

1=

Items:

1: (2,3)
2: (3.4)
3: (4,5)
4: (5,6)

=0

The optimal
knapsack
should contain

1,2}

Fractional Knapsack Problem

* We have n objects and a knapsack. The it" object has

positive weight w; and positive unit value v;. The
knapsack capacity is C.

* We wish to select a set of proportions of objects to
put in the knapsack so that the total values is
maximum and without breaking the knapsack.

Fractional Knapsack Problem

Greedy-fractional-knapsack (w, v, W)

FORi=1ton
do x[i] =0
weight =0
while weight < W
do i = best remaining item
IF weight + w[i] < W
then x[i] =1
weight = weight + w/[i]
else
x[i] = (W - weight) / wli]
weight = W
return x

Fractional Knapsack Problem

Input: 5 objects, €' = 100
« Example:

w | 10 20 30 40 50
v [20 30 66 40 60

* Select always the most valuable object

object |1 2 3 4 5
selected [0 0 1 05 1

— Total selected weight 100 and total value 146.
* Select always the lighter object

object 1 2 3 4 5
1 1

selected | 1 1 0

— Total selected weight 100 and total value 156.

06/02/2015

Fractional Knapsack Problem

» Select always the object with highest ratio value/weight

Input: 5 objects, (' = 100

w | 10 20 30 40 50
v [20 30 66 40 60

— Total selected weight 100 and total value 164.

object 1 2 3 4 5
ratio 20 15 22 10 1.2
selected | 1 1 1 0 0.8

06/02/2015

Fractional Knapsack Problem

* The greedy algorithm that always selects the most valuable
object does not always find an optimal solution to the
Fractional Knapsack problem.

* The greedy algorithm that always selects the lighter object
does not always find an optimal solution to the Fractional

Knapsack problem.

* The greedy algorithm that always selects the object with
better ratio value/weight always finds an optimal solution to
the Fractional Knapsack problem.

Homework # 7

16.2-6 %
Show how to solve the fractional knapsack problem in O(n) time.

16.2-7

Suppose you are given two sets A and B, each containing n positive integers. You
can choose to reorder each set however you like. After reordering, let a; be the ith
element of set A, and let b; be the ith element of set B. You then receive a payoff
of [T/, a;%. Give an algorithm that will maximize your payoff. Prove that your
algorithm maximizes the payoff, and state its running time.

2.5 Figure out whether drive is closer to brief or to divers and what the edit dis-
tance is to each. You may use any version of distance that you like.

2.7 Augment the minimum edit distance algorithm to output an alignment; you
will need to store pointers and add a stage to compute the backtrace.

06/02/2015 45

