JULY						
M	T	W	T	F	S	S
5			1	2	3	4
12	13	7	8	9	10	11
19	15	16	17	18		
26	21	22	23	24	25	
28	29	30	31			

(1.W PDA if possible $0^{n} 1^{n} 0^{n}$

Defn of Turring Nachine \qquad
$\xrightarrow{-}$
:-
A turing maehiniv ($T M$) is a $S-$ Tupple $T=\{Q, \varepsilon$, $\left.r, q_{0}, \delta\right)$, where
Q is a finite bet of states, assuned noti : contain h_{a} or h_{r}
Σ and μ are fimite set (inpui and appe alphabets)
q_{0}, the initien state

$$
\begin{aligned}
\text { s: } Q \times(\Gamma \cup\{\Delta\}) \rightarrow & \left(Q \cup\left\{h_{0}, h_{r}\right\}\right) \times(\operatorname{rU}\{\Delta\}) \\
& \times\{R, L, s\} \text { is a pertinal }
\end{aligned}
$$

شعبان Ir
JULY 2010
function.
for element $q \in Q, r \in Q u\left\{h_{a}, h_{r}\right\}, \quad x, y \in \Gamma \cup\{\Delta\}$ and $D \in\{R, L, S\}$, we interpret is as

$$
\delta(q, x)=(\gamma, y, D)
$$

Example
A TM accepting $\{a, b\}^{*}\{a b a\}\{a, b\}^{*}$
Homework:

1. A Turing machine accepting $\{\mathrm{xx} \mid \mathrm{x} \in\{\mathrm{a}, \mathrm{b}\} *\}$.

See Figure 7.5 in book.
2. A Turing machine accepting $\left\{\mathrm{a}^{\wedge} \mathrm{i} \mathrm{b} \mathrm{a}^{\wedge} \mathrm{j} \mid 0 \leq \mathrm{i}<\mathrm{j}\right\}$.

See Figure 7.8 in book
3. A Turing machine computing the reverse of a given string. See Figure 7.11 in book
4. A Turing machine to copy strings. See Figure 7.19 in book.

