Theory of Automata and Formal Languages

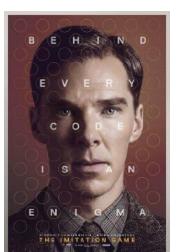
What is Automata Theory?

- Study of abstract (existing in thoughts or as an idea) computing devices, or "machines"
- Automaton = an abstract computing device
 - Note: A "device" need not even be a physical hardware!
- A fundamental question in computer science:
 - Find out what different models of machines can do and cannot do
 - The theory of computation
- Computability vs. Complexity

(A pioneer of automata theory)

Alan Turing (1912-1954)

- Father of Modern Computer Science
- English mathematician
- Studied abstract machines called *Turing machines* even before computers existed
- Heard of the Turing test?





Theory of Computation: A Historical Perspective

1930s	Alan Turing studied Turing machinesDecidabilityHalting problem
1940-1950s	 "Finite automata" machines studied Noam Chomsky proposes the "Chomsky Hierarchy" for formal languages
1969	Cook introduces "intractable" problems or "NP-Hard" problems
1970-	Modern computer science: compilers, computational & complexity theory evolve

Languages & Grammars

An alphabet is a set of symbols:

{0,1}

Sentences are strings of symbols:

A language is a set of sentences:

$$L = \{000,0100,0010,..\}$$

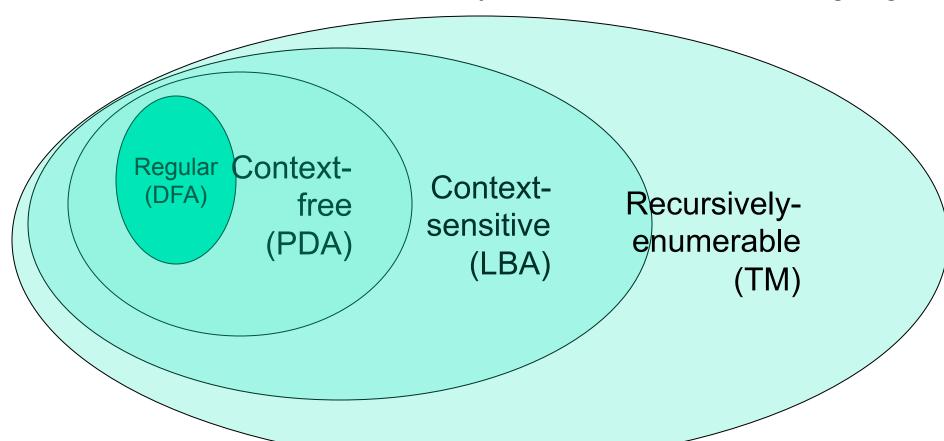
A grammar is a finite list of rules defining a language.

$$S \longrightarrow 0A$$
 $B \longrightarrow 1B$
 $A \longrightarrow 1A$ $B \longrightarrow 0F$
 $A \longrightarrow 0B$ $F \longrightarrow \epsilon$

- Languages: "A language is a collection of sentences of finite length all constructed from a finite alphabet of symbols"
- Grammars: "A grammar can be regarded as a device that enumerates the sentences of a language" nothing more, nothing less
- N. Chomsky, Information and Control, Vol 2, 1959

The Chomsky Hierachy

A containment hierarchy of classes of formal languages



The Central Concepts of Automata Theory

Alphabet

An alphabet is a finite, non-empty set of symbols

- We use the symbol \sum (sigma) to denote an alphabet
- Examples:
 - Binary: $\Sigma = \{0,1\}$
 - All lower case letters: $\sum = \{a,b,c,..z\}$
 - Alphanumeric: $\Sigma = \{a-z, A-Z, 0-9\}$
 - DNA molecule letters: $\Sigma = \{a,c,g,t\}$
 - **...**

Strings

A string or word is a finite sequence of symbols chosen from \sum

- Empty string is ε (or "epsilon")
- Length of a string w, denoted by "|w|", is equal to the number of (non- ε) characters in the string

•
$$E.g., x = 010100$$
 $|x| = 6$
• $y = 1010101$ $|x| = ?$

• xy = concatentation of two strings x and y

Powers of an alphabet

Let \sum be an alphabet.

- \sum^{k} = the set of all strings of length k

Languages

L is said to be a language over alphabet Σ , only if $L \subseteq \Sigma^*$

 \rightarrow this is because Σ^* is the set of all strings (of all possible length including 0) over the given alphabet Σ

Examples:

Let L be *the* language of <u>all strings consisting of *n* 0's followed</u> by *n* 1's:

$$L = \{\epsilon, 01, 0011, 000111, \ldots\}$$

Let L be *the* language of <u>all strings of with equal number of 0's and 1's</u>:

$$L = \{\epsilon, 01, 10, 0011, 1100, 0101, 1010, 1001, \dots\}$$

Canonical ordering of strings in the language

Definition: Ø denotes the Empty language

• Let $L = \{\epsilon\}$; Is $L = \emptyset$?

The Membership Problem

Given a string $w \in \sum^*$ and a language L over \sum , decide whether or not $w \in L$.

Example:

Let w = 100011

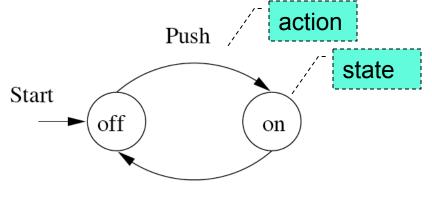
Q) Is $w \in$ the language of strings with equal number of 0s and 1s?

Finite Automata

- Some Applications
 - Software for designing and checking the behavior of digital circuits
 - Lexical analyzer of a typical compiler
 - Software for scanning large bodies of text (e.g., web pages) for pattern finding
 - Software for verifying systems of all types that have a finite number of states (e.g., stock market transaction, communication/network protocol)

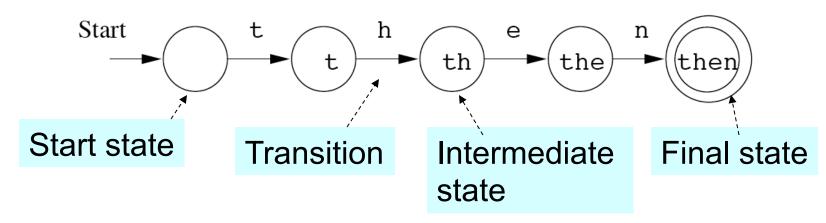
Finite Automata: Examples

On/Off switch



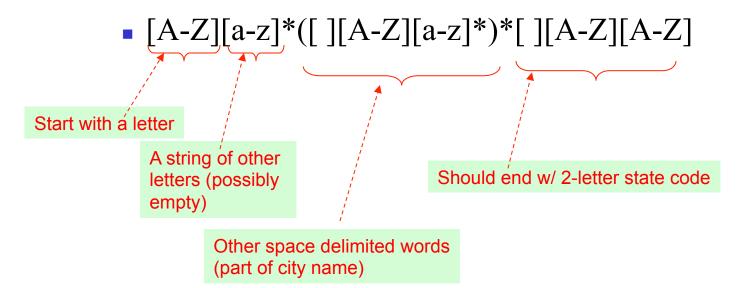
Push

Modeling recognition of the word "then"



Structural expressions

- Grammars
- Regular expressions
 - E.g., unix style to capture city names such as "Palo Alto CA":



Formal Proofs

Deductive Proofs

- A **deductive proof** consists of a sequence of statement whose truth leads us from some *initial statement* (hypothesis or given statements) to a *conclusion statement*.
- Each step of a deductive proof MUST follow from a given fact or previous statements (or their combinations) by an accepted **logical principle**.
- The theorem that is proved when we go from a hypothesis H to a conclusion C is the statement "if H then C". We say that C is deduced from H.

Deductive Proofs

Example: Proof of a Theorem

- Assume that the following theorem (initial statement) is given:
 - Given Thm. (initial statement): If $x \ge 4$, then $2^x \ge x^2$
 - We are not going to prove this theorem, we assume that it is true.
 - If we want we can prove this theorem using proof by induction.
- Theorem to be proved:

If x is the sum of the squares of four positive integers, then $2^x \ge x^2$

Hypothesis

Conclusion

Deductive Proofs

Example: Proof of a Theorem

Proof of

If x is the sum of the squares of four positive integers, then $2^x \ge x^2$

Statement	Justification
1. If $x \ge 4$, then $2^x \ge x^2$	Given theorem
2. $x = a^2 + b^2 + c^2 + d^2$	Given
3. $a \ge 1$ $b \ge 1$ $c \ge 1$ $d \ge 1$	Given
4. $a^2 \ge 1$ $b^2 \ge 1$ $c^2 \ge 1$ $d^2 \ge 1$	From (3) and principle of arithmetic
5. $x \ge 4$	From (2), (4) and principle of arithmetic
6. $2^x \ge x^2$	From (1) and (5)

Read it by yourself

Second Induction Example

- If $x \ge 4$ then $2^x \ge x^2$
- Basis: If x=4, then 2^x is 16 and x² is 16. Thus, the theorem holds.
- Induction: Suppose for some $x \ge 4$ that $2^x \ge x^2$. With this statement as the hypothesis, we need to prove the same statement, with x+1 in place of x: $2^{(x+1)} \ge (x+1)^2$

Second Induction Example

- $2^{(x+1)} \ge (x+1)^2$? (i)
- Rewrite in terms of S(x)
 - $2^{(x+1)} = 2*2^x$
 - We are assuming 2^x ≥ x^2
 - So therefore $2^{(x+1)} = 2 \cdot 2^x \ge 2x^2$ (ii)
- Substitute (ii) into (i)
 - $-2x^2 \ge (x+1)^2$
 - $-2x^2 \ge (x^2+2x+1)$
 - $-x^2 \ge 2x+1$
 - $x \ge 2 + 1/x$
 - Since x >=4, we get some value >=4 on the left side. The right side will equal at most 2.25 and in fact gets smaller and approaches 2 as x increases. Consequently, we have proven the theorem to be true by induction.

On Theorems, Lemmas and Corollaries

We typically refer to:

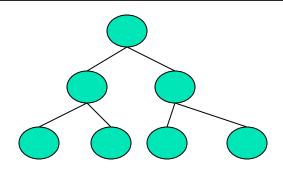
- A major result as a "theorem"
- An intermediate result that we show to prove a larger result as a "lemma"
- A result that follows from an already proven result as a "corollary"

An example:

Theorem: The height of an n-node binary tree is at least floor(lg n)

Lemma: Level i of a perfect binary tree has 2^i nodes.

Corollary: A perfect binary tree of height h has 2^{h+1}-1 nodes.



Quantifiers

"For all" or "For every"

- Universal proofs
- Notation= **∀**

"There exists"

- Used in existential proofs
- Notation= —

Implication is denoted by =>

• E.g., "IF A THEN B" can also be written as "A=>B"

Proving techniques

- By contradiction
 - Start with the statement contradictory to the given statement
 - E.g., To prove $(A \Rightarrow B)$, we start with:
 - (A and ~B)
 - ... and then show that could never happen
- By induction
 - (3 steps) Basis, inductive hypothesis, inductive step
- By contrapositive statement
 - If A then $B \equiv If \sim B$ then $\sim A$

Proving techniques...

- By counter-example
 - Show an example that disproves the claim
- Note: There is no such thing called a "proof by example"!
 - So when asked to prove a claim, an example that satisfied that claim is *not* a proof

Different ways of saying the same thing

- *"If* H then C":
 - i. H implies C
 - H => C
 - iii. C if H
 - iv. Honly if C
 - w. Whenever H holds, C follows

Proof of an iff Theorem

Let x be a real number. Then $\lfloor x \rfloor = \lceil x \rceil$ if and only if x is an integer.

If-Part:

- Given that x is an integer.
- By definitions of ceiling and floor operations. $\lfloor x \rfloor = x$ and $\lceil x \rceil = x$
- Thus, $\lfloor x \rfloor = \lceil x \rceil$.

Only-If-Part:

- Given that $\lfloor x \rfloor = \lceil x \rceil$
- By definitions of ceiling and floor operations. $\lfloor x \rfloor \le x$ and $\lceil x \rceil \ge x$
- Since given that $\lfloor x \rfloor = \lceil x \rceil$, $\lceil x \rceil \le x$ and $\lceil x \rceil \ge x$
- By the properties of arithmetic inequalities, $\lceil x \rceil = x$
- Since $\lceil x \rceil$ is always an integer, x MUST be integer too. \square

Summary

- Automata theory & a historical perspective
- Chomsky hierarchy
- Finite automata
- Alphabets, strings/words/sentences, languages
- Membership problem
- Proofs:
 - Deductive, induction, contrapositive, contradiction, counterexample
 - If and only if
- Read chapter 1 for more examples and exercises