Homework \# 1
 Theory of Automata and Formal Languages

Note: All questions carry equal marks.

Q1: Prove the following Theorem: If $x \geq 4$ then $2^{x} \geq \mathrm{x}^{2}$.
Q2: Prove the following Theorem: Let x be a real number. Then $\lfloor x\rfloor=\lceil x\rceil$ if and only if x is an integer.
Q3: Discuss about proof by contradiction and proof by contrapositive.
Q4: Prove the following by induction method.
For all $n \geq 0$:

$$
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}
$$

Q5: Write down the definition of DFA.
Q6: Design a DFA to accept the language $L=\{w \mid w$ has both an even number of 0 's and an even number of 1's $\}$.
Q7: Give DFA accepting the following language over the alphabet $\{0,1\}$. The language is the set of all strings beginning with a 1 that when interpreted as a binary integer is a multiple of 5. For example strings 101, 1010 and 1111 are in the language while 0,100 and 111 are not.
Q8: Provide the definition of an NFA.
Q9: Write regular expressions for the following languages:
The set of strings over alphabet $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ containing at least one a and at least one b .
The set of all strings of 0 's and 1 's such that every pair of adjacent 0 's appears before any pair of adjacent l's.
The set of all strings of 0 's and 1 's not containing 101 as a substring.
Q10: Give English descriptions of the languages of the following regular expressions:
a) $(1+\varepsilon)\left(00^{*} 1\right) 0^{*}$
b) $\left(0^{*} 1^{*}\right)^{*} 000(0+1)^{*}$
c) $(0+10)^{*} 1^{*}$

Q11: Define and explain the Extended Transition Function of DFA and NFA with respective examples.
Q12: Design a DFA for language Ln by supposing $\mathrm{n}=3$, where overall $n \geq 1$ and Ln $=\left\{x \in(0,1)^{*}| | x \mid \geq n\right.$ and nth symbol from the right in x is 1$\}$
Q13: Find the closure operations (Union, Intersection and Complement) for the following two DFAs.

(a)

(b)

