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Divide and Conquer

• Like Greedy and Dynamic Programming, Divide and 
Conquer is an algorithmic paradigm. A typical Divide 
and Conquer algorithm solves a problem using 
following three steps.
– 1. Divide: Break the given problem into 

subproblems of same type.
– 2. Conquer: Recursively solve these subproblems
– 3. Combine: Appropriately combine the answers
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http://www.geeksforgeeks.org/archives/18528
http://www.geeksforgeeks.org/archives/12635


Divide and Conquer

• Following are some standard algorithms that are Divide and 
Conquer algorithms.

– 1) Binary Search is a searching algorithm. In each step, the 
algorithm compares the input element x with the value of the 
middle element in array. If the values match, return the index of 
middle. Otherwise, if x is less than the middle element, then the 
algorithm recurs for left side of middle element, else recurs for 
right side of middle element.

– 2) Quicksort is a sorting algorithm. The algorithm picks a pivot 
element, rearranges the array elements in such a way that all 
elements smaller than the picked pivot element move to left 
side of pivot, and all greater elements move to right side. Finally, 
the algorithm recursively sorts the subarrays on left and right of 
pivot element.
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http://en.wikipedia.org/wiki/Binary_search_algorithm
http://en.wikipedia.org/wiki/Quick_Sort


Divide and Conquer

– 3) Merge Sort is also a sorting algorithm. The algorithm 
divides the array in two halves, recursively sorts them and 
finally merges the two sorted halves.

– 4) Closest Pair of Points The problem is to find the closest 
pair of points in a set of points in x-y plane. The problem 
can be solved in O(n^2) time by calculating distances of 
every pair of points and comparing the distances to find 
the minimum. The Divide and Conquer algorithm solves 
the problem in O(nLogn) time.

– 5) Strassen’s Algorithm is an efficient algorithm to multiply 
two matrices. A simple method to multiply two matrices 
need 3 nested loops and is O(n^3). Strassen’s algorithm 
multiplies two matrices in O(n^2.8974) time.
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http://en.wikipedia.org/wiki/Merge_Sort
http://en.wikipedia.org/wiki/Closest_pair_of_points_problem
http://en.wikipedia.org/wiki/Strassen_algorithm


Divide and Conquer

– 6) Cooley–Tukey Fast Fourier Transform (FFT) algorithm is 
the most common algorithm for FFT. It is a divide and 
conquer algorithm which works in O(nlogn) time.

– 7) Karatsuba algorithm for fast multiplication it does 
multiplication of two n-digit numbers in at most single-
digit multiplications in general (and exactly when n is a 
power of 2). It is therefore faster than 
the classical algorithm, which requires n2 single-digit 
products. If n = 210 = 1024, in particular, the exact counts 
are 310 = 59,049 and (210)2 = 1,048,576, respectively.

• We will  study some of them in separate lectures. Binary and 
Merge sort (read it yourself) because it was the part of 
“Fundamentals of Algorithms” course.
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http://en.wikipedia.org/wiki/Cooley%E2%80%93Tukey_FFT_algorithm
http://en.wikipedia.org/wiki/Karatsuba_algorithm
http://en.wikipedia.org/wiki/Long_multiplication


Divide and Conquer

• Divide and Conquer (D & C) vs Dynamic Programming 
(DP)
Both paradigms (D & C and DP) divide the given 
problem into subproblems and solve subproblems. How 
to choose one of them for a given problem? 

• Divide and Conquer should be used when same 
subproblems are not evaluated many times. Otherwise 
Dynamic Programming or Memoization should be used. 

• For example, Binary Search is a Divide and Conquer 
algorithm, we never evaluate the same subproblems 
again. On the other hand, for optimal BST, Dynamic 
Programming should be preferred (See previous 
lectures for details).
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Quick Sort

• Like Merge Sort, QuickSort is a Divide and Conquer algorithm.
• It picks an element as pivot and partitions the given array around 

the picked pivot. There are many different versions of quickSort
that pick pivot in different ways.
– 1) Always pick first element as pivot.
– 2) Always pick last element as pivot (as in this lecture)
– 3) Pick a random element as pivot.
– 4) Pick median as pivot.

• The key process in quickSort is partition(). 
• Target of partitions is, given an array and an element x of array as 

pivot, put x at its correct position in sorted array and put all smaller 
elements (smaller than x) before x, and put all greater elements 
(greater than x) after x. All this should be done in linear time.
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http://geeksquiz.com/merge-sort/


Quick Sort

• Here is the three step divide-and-conquer process for sorting 
a typical subarray A[p…r]:
– Divide: Partition (rearrange) the array A[p…r] into two 

(possibly empty) subarrays A[p…q-1] and A[q+1…r] such 
that each element of A[p…q-1] is less than or equal to 
A[q], which is, in turn, less than or equal to each element 
of A[q+1…r]. Compute the index q as part of this 
partitioning procedure.

– Conquer: Sort the two subarrays A[p…q-1] and A[q+1…r] 
by recursive calls to quicksort.

– Combine: Because the subarrays are already sorted, no 
work is needed to combine them: the entire array A[p…r] 
is now sorted.
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Quick Sort

• The following procedure implements quicksort:

• To sort an entire array A, the initial call is 
QUICKSORT(A,1,A.length())

• The key to the algorithm is the PARTITION procedure, which 
rearranges the subarray A[p…r] in place.

• The running time of PARTITION on the subarray A[p…r] is O(n)
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Quick Sort
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Quick Sort
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Quick Sort

• Analysis of QuickSort: Time taken by QuickSort in 
general can be written as following.
– T(n) = T(k) + T(n-k-1) + O(n)
– The first two terms are for two recursive calls, the 

last term is for the partition process. 
– k is the number of elements which are smaller 

than pivot.
• The time taken by QuickSort depends upon the input 

array and partition strategy. 
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Quick Sort

• Worst Case: The worst case occurs when the partition process 
always picks greatest or smallest element as pivot. 

• If we consider previous partition strategy where last element 
is always picked as pivot, the worst case would occur when 
the array is already sorted in increasing or decreasing order. 

• In this case, partitioning produces one subproblem with n-1 
elements and one with 0 elements. So following would be the 
recurrence for worst case.
– T(n) = T(0) + T(n-1) + O(n) 
– which is equivalent to T(n) = T(n-1) + O(n) 
– The solution of above recurrence is O(n2) by eq. of 

Arithmetic Series in A.2

2/10/21 13



Quick Sort

• Best Case: In the most even possible split, PARTITION 
produces two subproblems, each of size no more than 
n/2, since one is of size ⌊n/2⌋ and one of size ⌈n/2⌉-1. 

• In this case, quicksort runs much faster Or the best case 
occurs when the partition process always picks the 
middle element as pivot.

• Following is recurrence for best case.
– T(n) = 2T(n/2) + O(n)
– The solution of above recurrence is O(nLogn). It can 

be solved using case 2 of Master Theorem.
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http://en.wikipedia.org/wiki/Master_theorem


Quick Sort

• Although the worst case time complexity of 
QuickSort is O(n2) which is more than many other 
sorting algorithms like Merge Sort and Heap Sort.

• QuickSort is faster in practice, because its inner loop 
can be efficiently implemented on most 
architectures, and in most real-world data. 

• QuickSort can be implemented in different ways by 
changing the choice of pivot, so that the worst case 
rarely occurs for a given type of data..
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http://geeksquiz.com/merge-sort/
http://geeksquiz.com/heap-sort/


Strassen’s Matrix Multiplication

• Given two square matrices A and B of size n x n each, 
find their multiplication matrix.
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Strassen’s Matrix Multiplication

• Divide and Conquer : Following is simple Divide and Conquer 
method to multiply two square matrices.
– Divide matrices A and B in 4 sub-matrices of size N/2 x N/2 

as shown in the below diagram.
– Calculate following values recursively. ae + bg, af + bh, ce + 

dg and cf + dh.
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Strassen’s Matrix Multiplication
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Strassen’s Matrix Multiplication

• In the previous method, we do 8 multiplications for 
matrices of size N/2 x N/2 and 4 additions. Addition 
of two matrices takes O(N2) time. So the time 
complexity can be written as
– T(N) = 8T(N/2) + O(N2) 
– From Master's Theorem (4.5), time complexity of 

above method is O(N3) which is unfortunately 
same as the above naive method.
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http://www.geeksforgeeks.org/analysis-algorithm-set-4-master-method-solving-recurrences/


Strassen’s Matrix Multiplication

• Simple Divide and Conquer also leads to O(N3), can 
there be a better way?
– In the previous divide and conquer method, the main 

component for high time complexity is 8 recursive 
calls. 

– The idea of Strassen’s method is to reduce the 
number of recursive calls to 7. 

– Strassen’s method is similar to previous simple divide 
and conquer method in the sense that this method 
also divide matrices to sub-matrices of size N/2 x N/2 
as shown in the previous diagram, but in Strassen’s 
method, the four sub-matrices of result are calculated 
using following formulae.
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Strassen’s Matrix Multiplication
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Strassen’s Matrix Multiplication
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• Time Complexity of Strassen’s Method: Addition and 
Subtraction of two matrices takes O(N2) time. So 
time complexity can be written as
– T(N) = 7T(N/2) + O(N2) 
– From Master's Theorem, time complexity of above 

method is O(NLog7) which is approximately 
O(N2.8074)

http://www.geeksforgeeks.org/analysis-algorithm-set-4-master-method-solving-recurrences/


Strassen’s Matrix Multiplication
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• Generally Strassen’s Method is not preferred for practical 
applications for following reasons.
– The constants used in Strassen’s method are high and 

for a typical application Naive method works better.
– For Sparse matrices, there are better methods 

especially designed for them.
– The sub-matrices in recursion take extra space.
– Because of the limited precision of computer 

arithmetic on non-integer values, larger errors 
accumulate in Strassen’s algorithm than in Naive 
Method.



Home Work # 5
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