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§ Not just consider one operation, but a sequence of 
operations on a given data structure.

§ Average cost over a sequence of operations.
§ Probabilistic analysis:

§ Average case running time: average over all possible 
inputs for one algorithm (operation).

§ If using probability, called expected running time. 
§ Amortized analysis:

§ No involvement of probability
§ Average performance on a sequence of operations, even 

some operation is expensive.
§ Guarantee average performance of each operation among 

the sequence in worst case.
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§ Aggregate analysis:
§ Total cost of n operations/n

§ Accounting method:
§ Assign each type of operation an (different) amortized cost
§ overcharge some operations, 
§ store the overcharge as credit on specific objects, 
§ then use the credit for compensation for some later 

operations.

§ Potential method:
§ Same as accounting method
§ But store the credit as “potential energy” and as a whole.
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§ Consider a sequence of n PUSH, POP, MULTIPOP.
§ The worst-case cost for single MULTIPOP in the 

sequence is  O(n), since the stack size is at most n. 
§ Thus, the cost of the whole sequence is O(n2). 

Correct, but not tight.
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§ In fact, a sequence of n operations on an initially 
empty stack cost at most O(n). Why?

§Each object can be POP only once (including in 
MULTIPOP) for  each time it is PUSHed. #POPs are 
at most #PUSHs, which is at most n.

§Thus, the average cost of an operation is O(n)/n = 
O(1).

§Amortized cost in aggregate analysis is defined to 
be average cost.
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§ Single execution of INCREMENT takes O(k) in the worst 
case (when A contains all 1s) and k is total bits in A

§ Sequence of n executions takes O(nk) in worst case 
(suppose initial counter is 0). 

§ This bound is correct, but not tight. The tight bound is 
O(n) for n executions.
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Observation: The running time determined by #flips
but not all bits flip each time INCREMENT is called.

A[0] flips every time, total n times.
A[1] flips every other time, ën/2û times.
A[2] flips every forth time, ën/4û times.
….
for i=0,1,…,k-1, A[i] flips  ën/2iû times.
Thus total #flips is åi=0

k-1 ën/2iû
< nåi=0

¥ 1/2i
=2n.

https://www.math.toronto.edu/mathnet/questionCorner/geomsum.html


§Let us consider an example of a simple hash 
table insertions. 

§How do we decide table size? 

§There is a trade-off between space and time, if 
we make hash-table size big, search time 
becomes fast, but space required becomes 
high.
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§The solution to this trade-off problem is to 
use Dynamic Table (or Arrays). The idea is to 
increase the size of table whenever it 
becomes full. Following are the steps to 
follow when table becomes full.
§Allocate memory for a larger table of size, 

typically twice the old table.
§Copy the contents of old table to new table.
§Free the old table.

§ If the table has space available, we simply 
insert new item in available space.
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http://en.wikipedia.org/wiki/Dynamic_array
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§What is the time complexity of n 
insertions using the previous scheme?
§ If we use simple analysis, the worst-case 

cost of an insertion is O(n). Therefore, worst 
case cost of n inserts is n * O(n) which is 
O(n2). This analysis gives an upper bound, 
but not a tight upper bound for n insertions 
as all insertions don’t take Θ(n) time.

1/20/21 11



§ Using Amortized Analysis, we could prove that the Dynamic Table scheme has 
O(1) insertion time which is a great result used in hashing. Also, the concept of 
dynamic table is used in vectors in C++, ArrayList in Java.
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http://www.cplusplus.com/reference/vector/vector/
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html


§ Idea:
§ Assign differing charges to different operations.

§ The amount of the charge is called amortized cost.

§ Amortized cost is more or less than actual cost.
§ When amortized cost > actual cost, the difference is saved in 

specific objects as credits.

§ The credits can be used by later operations whose amortized 
cost < actual cost.

§ In aggregate analysis, all operations have same amortized 
costs but here different.
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§ Suppose actual cost is ci for the ith operation in 
the sequence, and amortized cost is ci’ and then 
å i=1

n ci' ³ å i=1
n ci should hold.

§ Average cost (per operation) should be small 
using amortized cost, and total amortized cost is 
an upper bound of total actual cost as holds for all 
sequences of operations above.

§ Total credit is å i=1
n ci' - å i=1

n ci , which should be 
nonnegative. Moreover, å i=1

t ci' - å i=1
t ci  ≥0 for 

any t>0.
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§ Actual costs:
§ PUSH :1, POP :1, MULTIPOP: min(s,k).

§ Let assign the following amortized costs:
§ PUSH:2, POP: 0, MULTIPOP: 0.

§ Similar to a stack of plates in a cafeteria.
§ Suppose $1 represents a unit cost.
§ When pushing a plate, use one dollar to pay the actual cost of the push and 

leave one dollar on the plate as credit.
§ Whenever POPing a plate, the one dollar on the plate is used to pay the 

actual cost of the POP. (same for MULTIPOP).
§ By charging PUSH a little more, do not charge POP or MULTIPOP.

§ The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus O(1) for 
average amortized cost for each operation.

§ Conditions hold: total amortized cost ≥total actual cost, and amount of credits 
never becomes negative. 
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§ Let $1 represent each unit of cost (i.e., the flip of 
one bit).

§ Charge an amortized cost of $2 to set a bit to 1.
§ Whenever a bit is set, use $1 to pay the actual 

cost, and store another $1 on the bit as credit.
§ When a bit is reset, the stored $1 pays the cost.
§ At most, one bit is set in each operation, so the 

amortized cost of an operation is at most $2.
§ Thus, total amortized cost of n operations is O(n), 

and average is O(1).
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§ Charge 3 for each insertion: 
§ 1 token for each raw insertion
§ Resize needed: To pay for moving the elements, 

use the token that’s present on each element that 
needs to move. 

§ Place one token on newly inserted element, and 
one token capacity/2 elements prior.  
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§ O(1) amortized cost for each PushBack.
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§ Same as accounting method: something prepaid is 
used later.

§ Different from accounting method
§ The prepaid work not as credit, but as 

“potential energy”, or “potential”.
§ The potential is associated with the data 

structure as a whole rather than with specific 
objects within the data structure.
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§ Initial data structure D0, 
§ n operations, resulting in D0, D1,…, Dn with costs 

c1, c2,…, cn. 
§ A potential function F : {Di} à R (real numbers)
§F(Di) is called the potential of Di.
§ Amortized cost ci' of the ith operation is:

§ ci' = ci + F(Di) - F(Di-1). (actual cost + potential 
change)

§ å i=1
n ci' = å i=1

n (ci + F(Di) - F(Di-1)) 
= å i=1

nci + F(Dn) - F(D0)
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§ If F(Dn) ³ F(D0), then total amortized cost is an 
upper bound of total actual cost. But we do not 
know how many operations, so F(Di) ³ F(D0) is 
required for any i.

§ It is convenient to define F(D0)=0,and so F(Di) ³
0, for all i.

§ If the potential change is positive (i.e., F(Di) -
F(Di-1)>0), then ci' is an overcharge (so store the 
increase as potential), 

§ otherwise, undercharge (discharge the potential 
to pay the actual cost). 

1/20/21 34



§ Potential for a stack is the number of objects in the stack. So F(D0)=0, and 
F(Di) ³ 0

§ Amortized cost of stack operations:
§ PUSH: 
§ Potential change: F(Di)- F(Di-1) =(s+1)-s =1.
§ Amortized cost: ci' = ci + F(Di) - F(Di-1)=1+1=2.

§ POP: 
§ Potential change: F(Di)- F(Di-1) =(s-1) –s= -1.
§ Amortized cost: ci' = ci + F(Di) - F(Di-1)=1+(-1)=0.

§ MULTIPOP(S,k):  k'=min(s,k)
§ Potential change: F(Di)- F(Di-1) = –k'.
§ Amortized cost: ci' = ci + F(Di) - F(Di-1)=k'+(-k')=0.

§ So amortized cost of each operation is O(1),  and total amortized cost of n
operations is O(n). 

§ Since total amortized cost is an upper bound of actual cost, the worse case 
cost of n operations is O(n). 
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§ Define the potential of the counter after the ith INCREMENT is 
F(Di) =bi, the number of 1’s. clearly, F(Di) ³ 0.

§ Let us compute amortized cost of an operation
§ Suppose the ith operation resets ti bits.
§ Actual cost ci of the operation is at most ti +1.
§ If bi=0, then the ith operation resets all k bits, so bi-1=ti=k.
§ If bi>0, then bi=bi-1-ti+1
§ In either case, bi £ bi-1-ti+1.
§ So potential change is F(Di) - F(Di-1) £ bi-1-ti+1-bi-1=1-ti.

§ So amortized cost is: ci' = ci + F(Di) - F(Di-1) £ ti +1+1-ti=2.
§ The total amortized cost of n operations is O(n). 
§ Thus worst case cost is O(n). 
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§ Potential function Φ on states of a data structure
§Φ(h0) = 0, where h0 is the initial state of the data 

structure.
§Φ(ht) ≥ 0 for all states ht of the data structure.
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§ Sequence of n operations taking actual times c0, c1, c2, ..., cn−1 and 
producing data structures h1, h2, ..., hn starting from h0. 

§ The total amortized time is the sum of the individual amortized 
times:

(c0 + Φ(h1) − Φ(h0)) + (c1 + Φ(h2) − Φ(h1)) + ... + (cn−1 + Φ(hn) −
Φ(hn−1))
= c0 + c1 + ... + cn−1 + Φ(hn) − Φ(h0)
= c0 + c1 + ... + cn−1 + Φ(hn)

§ Amortized time for a sequence of operations overestimates of the 
actual time by Φ(hn), which by assumption is always positive. 

§ Thus, the total amortized time is always an upper bound on the 
actual time.
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§ For dynamically arrays, we can use the potential function

Φ(h) = 2n −m
§ n is the current number of elements and m is the current length of 

the array. 

§ If we start with an array of length 0, and allocate an array of 
length 1 when the first element is added, and thereafter 
double the array size whenever we need more space, we 
have Φ(h0) = 0 and Φ(ht) ≥ 0 for all t. 

§ The latter inequality holds because the number of elements 
is always at least half the size of the array.
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§ Now we would like to show that adding an element takes 
amortized constant time. There are two cases.
§ If n < m, then the actual cost is 1, n increases by 1, and m does not 

change.  The table does not expand and suppose that ni=numi and 
mi=sizei. 

§ If n = m, then the array is doubled, so the actual time is n + 1. The 
table expands and suppose that ni=numi and mi=sizei.

§ In both cases, the amortized time is O(1).

§ The key to amortized analysis with the physicist's method is 
to define the right potential function. 
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§ Potential function
§ F(T ) = 2 ・ T.num − T.size
§ Initially, T.num = T.size = 0 ÞF = 0.
§ Just after expansion, T.num = T.size / 2, ÞF (T)= 0.
§ Just before expansion, T.num = T.size ÞF (T)= 

T.num Þ have enough potential to pay for moving 
all items.

§ Need F ≥ 0, always.
§ Always have

§ size ≥ num ≥ ½ size Þ 2 ・ num ≥ size ÞF ≥ 0 .
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§ Continue reading Dynamic Tables from the textbook
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