
Dr. Qaiser Abbas

Department of Computer Science & IT,

University of Sargodha, Sargodha, 40100, Pakistan

qaiser.abbas@uos.edu.pk

1

1/20/21

§ Not just consider one operation, but a sequence of
operations on a given data structure.

§ Average cost over a sequence of operations.
§ Probabilistic analysis:

§ Average case running time: average over all possible
inputs for one algorithm (operation).

§ If using probability, called expected running time.
§ Amortized analysis:

§ No involvement of probability
§ Average performance on a sequence of operations, even

some operation is expensive.
§ Guarantee average performance of each operation among

the sequence in worst case.

21/20/21

§ Aggregate analysis:
§ Total cost of n operations/n

§ Accounting method:
§ Assign each type of operation an (different) amortized cost
§ overcharge some operations,
§ store the overcharge as credit on specific objects,
§ then use the credit for compensation for some later

operations.

§ Potential method:
§ Same as accounting method
§ But store the credit as “potential energy” and as a whole.

1/20/21 3

§ Consider a sequence of n PUSH, POP, MULTIPOP.
§ The worst-case cost for single MULTIPOP in the

sequence is O(n), since the stack size is at most n.
§ Thus, the cost of the whole sequence is O(n2).

Correct, but not tight.

1/20/21 4

§ In fact, a sequence of n operations on an initially
empty stack cost at most O(n). Why?

§Each object can be POP only once (including in
MULTIPOP) for each time it is PUSHed. #POPs are
at most #PUSHs, which is at most n.

§Thus, the average cost of an operation is O(n)/n =
O(1).

§Amortized cost in aggregate analysis is defined to
be average cost.

1/20/21 5

§ Single execution of INCREMENT takes O(k) in the worst
case (when A contains all 1s) and k is total bits in A

§ Sequence of n executions takes O(nk) in worst case
(suppose initial counter is 0).

§ This bound is correct, but not tight. The tight bound is
O(n) for n executions.

1/20/21 6

1/20/21 7

Observation: The running time determined by #flips
but not all bits flip each time INCREMENT is called.

A[0] flips every time, total n times.
A[1] flips every other time, ën/2û times.
A[2] flips every forth time, ën/4û times.
….
for i=0,1,…,k-1, A[i] flips ën/2iû times.
Thus total #flips is åi=0

k-1 ën/2iû
< nåi=0

¥ 1/2i
=2n.

https://www.math.toronto.edu/mathnet/questionCorner/geomsum.html

§Let us consider an example of a simple hash
table insertions.

§How do we decide table size?

§There is a trade-off between space and time, if
we make hash-table size big, search time
becomes fast, but space required becomes
high.

1/20/21 8

§The solution to this trade-off problem is to
use Dynamic Table (or Arrays). The idea is to
increase the size of table whenever it
becomes full. Following are the steps to
follow when table becomes full.
§Allocate memory for a larger table of size,

typically twice the old table.
§Copy the contents of old table to new table.
§Free the old table.

§ If the table has space available, we simply
insert new item in available space.

1/20/21 9

http://en.wikipedia.org/wiki/Dynamic_array

1/20/21 10

§What is the time complexity of n
insertions using the previous scheme?
§ If we use simple analysis, the worst-case

cost of an insertion is O(n). Therefore, worst
case cost of n inserts is n * O(n) which is
O(n2). This analysis gives an upper bound,
but not a tight upper bound for n insertions
as all insertions don’t take Θ(n) time.

1/20/21 11

§ Using Amortized Analysis, we could prove that the Dynamic Table scheme has
O(1) insertion time which is a great result used in hashing. Also, the concept of
dynamic table is used in vectors in C++, ArrayList in Java.

1/20/21 12

http://www.cplusplus.com/reference/vector/vector/
http://docs.oracle.com/javase/7/docs/api/java/util/ArrayList.html

§ Idea:
§ Assign differing charges to different operations.

§ The amount of the charge is called amortized cost.

§ Amortized cost is more or less than actual cost.
§ When amortized cost > actual cost, the difference is saved in

specific objects as credits.

§ The credits can be used by later operations whose amortized
cost < actual cost.

§ In aggregate analysis, all operations have same amortized
costs but here different.

1/20/21 13

§ Suppose actual cost is ci for the ith operation in
the sequence, and amortized cost is ci’ and then
å i=1

n ci' ³ å i=1
n ci should hold.

§ Average cost (per operation) should be small
using amortized cost, and total amortized cost is
an upper bound of total actual cost as holds for all
sequences of operations above.

§ Total credit is å i=1
n ci' - å i=1

n ci , which should be
nonnegative. Moreover, å i=1

t ci' - å i=1
t ci ≥0 for

any t>0.

1/20/21 14

§ Actual costs:
§ PUSH :1, POP :1, MULTIPOP: min(s,k).

§ Let assign the following amortized costs:
§ PUSH:2, POP: 0, MULTIPOP: 0.

§ Similar to a stack of plates in a cafeteria.
§ Suppose $1 represents a unit cost.
§ When pushing a plate, use one dollar to pay the actual cost of the push and

leave one dollar on the plate as credit.
§ Whenever POPing a plate, the one dollar on the plate is used to pay the

actual cost of the POP. (same for MULTIPOP).
§ By charging PUSH a little more, do not charge POP or MULTIPOP.

§ The total amortized cost for n PUSH, POP, MULTIPOP is O(n), thus O(1) for
average amortized cost for each operation.

§ Conditions hold: total amortized cost ≥total actual cost, and amount of credits
never becomes negative.

1/20/21 15

§ Let $1 represent each unit of cost (i.e., the flip of
one bit).

§ Charge an amortized cost of $2 to set a bit to 1.
§ Whenever a bit is set, use $1 to pay the actual

cost, and store another $1 on the bit as credit.
§ When a bit is reset, the stored $1 pays the cost.
§ At most, one bit is set in each operation, so the

amortized cost of an operation is at most $2.
§ Thus, total amortized cost of n operations is O(n),

and average is O(1).

1/20/21 16

§ Charge 3 for each insertion:
§ 1 token for each raw insertion
§ Resize needed: To pay for moving the elements,

use the token that’s present on each element that
needs to move.

§ Place one token on newly inserted element, and
one token capacity/2 elements prior.

1/20/21 17

18

1/20/21

19

1/20/21

20

1/20/21

21

1/20/21

22

1/20/21

23

1/20/21

24

1/20/21

25

1/20/21

26

1/20/21

27

1/20/21

28

1/20/21

29

1/20/21

30

1/20/21

§ O(1) amortized cost for each PushBack.

1/20/21 31

§ Same as accounting method: something prepaid is
used later.

§ Different from accounting method
§ The prepaid work not as credit, but as

“potential energy”, or “potential”.
§ The potential is associated with the data

structure as a whole rather than with specific
objects within the data structure.

1/20/21 32

§ Initial data structure D0,
§ n operations, resulting in D0, D1,…, Dn with costs

c1, c2,…, cn.
§ A potential function F : {Di} à R (real numbers)
§F(Di) is called the potential of Di.
§ Amortized cost ci' of the ith operation is:

§ ci' = ci + F(Di) - F(Di-1). (actual cost + potential
change)

§ å i=1
n ci' = å i=1

n (ci + F(Di) - F(Di-1))
= å i=1

nci + F(Dn) - F(D0)
1/20/21 33

§ If F(Dn) ³ F(D0), then total amortized cost is an
upper bound of total actual cost. But we do not
know how many operations, so F(Di) ³ F(D0) is
required for any i.

§ It is convenient to define F(D0)=0,and so F(Di) ³
0, for all i.

§ If the potential change is positive (i.e., F(Di) -
F(Di-1)>0), then ci' is an overcharge (so store the
increase as potential),

§ otherwise, undercharge (discharge the potential
to pay the actual cost).

1/20/21 34

§ Potential for a stack is the number of objects in the stack. So F(D0)=0, and
F(Di) ³ 0

§ Amortized cost of stack operations:
§ PUSH:
§ Potential change: F(Di)- F(Di-1) =(s+1)-s =1.
§ Amortized cost: ci' = ci + F(Di) - F(Di-1)=1+1=2.

§ POP:
§ Potential change: F(Di)- F(Di-1) =(s-1) –s= -1.
§ Amortized cost: ci' = ci + F(Di) - F(Di-1)=1+(-1)=0.

§ MULTIPOP(S,k): k'=min(s,k)
§ Potential change: F(Di)- F(Di-1) = –k'.
§ Amortized cost: ci' = ci + F(Di) - F(Di-1)=k'+(-k')=0.

§ So amortized cost of each operation is O(1), and total amortized cost of n
operations is O(n).

§ Since total amortized cost is an upper bound of actual cost, the worse case
cost of n operations is O(n).

1/20/21 35

§ Define the potential of the counter after the ith INCREMENT is
F(Di) =bi, the number of 1’s. clearly, F(Di) ³ 0.

§ Let us compute amortized cost of an operation
§ Suppose the ith operation resets ti bits.
§ Actual cost ci of the operation is at most ti +1.
§ If bi=0, then the ith operation resets all k bits, so bi-1=ti=k.
§ If bi>0, then bi=bi-1-ti+1
§ In either case, bi £ bi-1-ti+1.
§ So potential change is F(Di) - F(Di-1) £ bi-1-ti+1-bi-1=1-ti.

§ So amortized cost is: ci' = ci + F(Di) - F(Di-1) £ ti +1+1-ti=2.
§ The total amortized cost of n operations is O(n).
§ Thus worst case cost is O(n).

1/20/21 36

§ Potential function Φ on states of a data structure
§Φ(h0) = 0, where h0 is the initial state of the data

structure.
§Φ(ht) ≥ 0 for all states ht of the data structure.

1/20/21 37

§ Sequence of n operations taking actual times c0, c1, c2, ..., cn−1 and
producing data structures h1, h2, ..., hn starting from h0.

§ The total amortized time is the sum of the individual amortized
times:

(c0 + Φ(h1) − Φ(h0)) + (c1 + Φ(h2) − Φ(h1)) + ... + (cn−1 + Φ(hn) −
Φ(hn−1))
= c0 + c1 + ... + cn−1 + Φ(hn) − Φ(h0)
= c0 + c1 + ... + cn−1 + Φ(hn)

§ Amortized time for a sequence of operations overestimates of the
actual time by Φ(hn), which by assumption is always positive.

§ Thus, the total amortized time is always an upper bound on the
actual time.

1/20/21 38

§ For dynamically arrays, we can use the potential function

Φ(h) = 2n −m
§ n is the current number of elements and m is the current length of

the array.

§ If we start with an array of length 0, and allocate an array of
length 1 when the first element is added, and thereafter
double the array size whenever we need more space, we
have Φ(h0) = 0 and Φ(ht) ≥ 0 for all t.

§ The latter inequality holds because the number of elements
is always at least half the size of the array.

1/20/21 39

§ Now we would like to show that adding an element takes
amortized constant time. There are two cases.
§ If n < m, then the actual cost is 1, n increases by 1, and m does not

change. The table does not expand and suppose that ni=numi and
mi=sizei.

§ If n = m, then the array is doubled, so the actual time is n + 1. The
table expands and suppose that ni=numi and mi=sizei.

§ In both cases, the amortized time is O(1).

§ The key to amortized analysis with the physicist's method is
to define the right potential function.

1/20/21 40

§ Potential function
§ F(T) = 2 ・ T.num − T.size
§ Initially, T.num = T.size = 0 ÞF = 0.
§ Just after expansion, T.num = T.size / 2, ÞF (T)= 0.
§ Just before expansion, T.num = T.size ÞF (T)=

T.num Þ have enough potential to pay for moving
all items.

§ Need F ≥ 0, always.
§ Always have

§ size ≥ num ≥ ½ size Þ 2 ・ num ≥ size ÞF ≥ 0 .

1/20/21 41

1/20/21 42

1/20/21 43

§ Continue reading Dynamic Tables from the textbook

1/20/21 44

