
Advanced 
Analysis of 
Algorithms

• Dr. Qaiser Abbas

• Department of Computer Science & IT, 

• University of Sargodha, Sargodha, 40100, Pakistan

• qaiser.abbas@uos.edu.pk

1



Greedy Algorithms

• Builds up a solution piece by piece, always 
choosing the next piece that offers the most 
obvious and immediate benefit.
• An optimization problem can be solved using 

Greedy if the problem has the following property:
• At every step, we can make a choice that looks best at 

the moment, and we get the optimal solution of the 
complete problem.

Wednesday, January 20, 2021 2



Greedy Algorithms

• It generally becomes a better approach if applicable 
as the Greedy algorithms are more efficient than 
other techniques like DP. 
• Greedy algorithms cannot always be applied. 
• Fractional Knapsack (can be solved using Greedy)
• 0-1 Knapsack (cannot be solved using Greedy).

Wednesday, January 20, 2021 3



Greedy Algorithms

• Following are some Greedy algorithms.
• Kruskal’s Minimum Spanning Tree (MST): We create an 

MST by picking edges one by one. The Greedy choice is 
to pick the smallest weight edge that doesn’t cause a 
cycle in the MST constructed so far.
• Prim’s Minimum Spanning Tree: We create an MST by 

picking edges one by one. We maintain two sets: set of 
the vertices already included in MST and the set of the 
vertices not yet included. The Greedy choice is to pick 
the smallest weight edge that connects the two sets.

Wednesday, January 20, 2021 4

http://en.wikipedia.org/wiki/Kruskal's_algorithm
http://en.wikipedia.org/wiki/Prim's_algorithm


Greedy Algorithms

• Dijkstra’s Shortest Path: Similar to Prim’s algorithm. 
Shortest path tree is built up, edge by edge. We 
maintain two sets: set A of the vertices already included 
in the tree and the set B of the vertices not yet included. 
The Greedy Choice is to pick the edge that connects the 
two sets and is on the smallest weight path from source 
to the set B vertices.
• Huffman Coding: Huffman Coding is a loss-less 

compression technique. It assigns variable length bit 
codes to different characters. The Greedy Choice is to 
assign least bit length code to the most frequent 
character.

Wednesday, January 20, 2021 5

http://en.wikipedia.org/wiki/Dijkstra's_algorithm
http://en.wikipedia.org/wiki/Huffman_coding


Greedy Algorithms

• Can be used to get an approximation for hard 
optimization problems. Traveling Salesman Problem is a 
NP hard problem. Picking nearest unvisited city from the 
current city at every step is a greedy approach but this 
doesn’t always produce best optimal solution, however, 
can be used to get an approximate optimal solution.

Wednesday, January 20, 2021 6

http://en.wikipedia.org/wiki/Travelling_salesman_problem


Activity Selection Problem

• Problem statement:
• You are given n activities with their start and finish 

times. Select the maximum number of activities that can 
be performed by a single person, if a person can only 
work on a single activity at a time.

• Example:
• Consider the following 6 activities. 

• Act[]={a0,a1,a2,a3,a4,a5}
• start[] = {1, 3, 0, 5, 8, 5}; 
• finish[] = {2, 4, 6, 7, 9, 9}; 
• The maximum set of activities that can be executed by a single 

person is {a0, a1, a3, a4}

Wednesday, January 20, 2021 7



Activity Selection Problem

• The greedy choice is to always pick the next activity 
whose finish time is least among the remaining 
activities and the start time is more than or equal to 
the finish time of previously selected activity. 
• We can sort the activities according to their finishing 

time so that we always consider the next activity as 
minimum finishing time activity.
• Sort the activities according to their finishing time
• Select the first activity from the sorted array and print it.
• Do following for remaining activities in the sorted array.

• If the start time of this activity is greater than the finish time of 
previously selected activity then select this activity and print it.

Wednesday, January 20, 2021 8



Activity Selection Problem

Wednesday, January 20, 2021 9



Activity Selection Problem

• GREEDY-ACTIVITY-SELECTOR() schedules a set of n 
activities in O(n) time, assuming that the activities 
are sorted initially by their finish times.
• In fact, {a1; a4; a8; a11} is a largest subset of 

mutually compatible activities; another largest 
subset is {a2;a4;a9;a11}. 

Wednesday, January 20, 2021 10



Assignment # 3

Wednesday, January 20, 2021 11



Assignment # 3

Wednesday, January 20, 2021 12



Huffman Codes

• Huffman coding is a lossless data compression 
algorithm. The idea is to assign variable-length 
codes to input characters.
• Based on the frequencies of corresponding 

characters, The most frequent character gets the 
smallest code, and the least frequent character gets 
the largest code.

Wednesday, January 20, 2021 13



Huffman Codes

• Codes assigned to input characters are Prefix 
Codes, means the code assigned to one character is 
not prefix of code assigned to any other character. 
This is how Huffman Coding makes sure that there 
is no ambiguity when decoding the generated bit 
stream.

Wednesday, January 20, 2021 14

http://en.wikipedia.org/wiki/Prefix_code


Huffman Codes

• Example: Let there be four characters a, b, c and d, 
and their corresponding variable length codes be 
00, 01, 0 and 1. This coding leads to ambiguity 
because code assigned to c is prefix of codes 
assigned to a and b. If the compressed bit stream is 
0001, the de-compressed output may be “cccd” or 
“ccb” or “acd” or “ab”.
• There are mainly two major parts in Huffman 

Coding
• Build a Huffman Tree from input characters.
• Traverse the Huffman Tree and assign codes to 

characters.

Wednesday, January 20, 2021 15



Huffman Codes

• Steps to build Huffman Tree
Input is an array of unique characters along with their 
frequency of occurrences and output is Huffman Tree.

1. Create a leaf node for each unique character and build a min 
heap of all leaf nodes (Min Heap is used as a priority queue. The 
value of frequency field is used to compare two nodes in min 
heap. Initially, the least frequent character is at root)

2. Extract two nodes with the minimum frequency from the min 
heap.

3. Create a new internal node with frequency equal to the sum of 
the two nodes frequencies. Make the first extracted node as its 
left child and the other extracted node as its right child. Add this 
node to the min heap.

4. Repeat steps#2 and #3 until the heap contains only one node. 
The remaining node is the root node, and the tree is complete.

Wednesday, January 20, 2021 16



Huffman Codes

• Let us understand the algorithm with an example:

Wednesday, January 20, 2021 17



Huffman Codes

Wednesday, January 20, 2021 18



Huffman Codes Algorithm

Wednesday, January 20, 2021 19



Huffman Codes

• Time Complexity:
• Q is implemented as binary min-heap(ch6)
• For a set of C of n characters, the initialization of Q in 

line 2 can be performed in O(n) time using the BUILD-
MIN-HEAP procedure (section 6.3)
• The for loop in lines 3-8 is executed exactly n-1 times, 

and since each heap operation requires time O(logn), so 
the loop contributes O(nlogn) to the running time of 
Huffman algorithm on a set of n characters.

Wednesday, January 20, 2021 20



Assignment # 3

Wednesday, January 20, 2021 21


