OO

Adva nce * Dr. Qaiser Abbas
. * Computer Science & IT
Ana IVS'S Of * University of Sargodha

* qaiser.abbas@uos.edu.pk

Algorithms

OO

LCS
Problem

Let us discuss Longest
Common Subsequence

(LCS) problem as one more
example problem that can
be solved using Dynamic
Programming.

10/31/2014

LCS Problem Statement: Given two For example, “abc”, “abg”, “bdf”,

sequences, find the length of “aeg”, "acefg”, .. etcare
longest subsequence present in subsequences of “abcdefg”. So, a
both of them. A subsequence is a string of length n has 2" different
LCS sequence that appears in the same possible subsequences.
relative order, but not necessarily
contiguous.

Problem

L

It is a classic computer science
problem, the basis of diff (a file
comparison program that outputs
the differences between two files)
and has applications in
bioinformatics.

10/31/2014 3

http://en.wikipedia.org/wiki/Diff

10/31/2014

Examples

LCS for input Sequences “ABCDGH” and
“AEDFHR” is “ADH” of length 3.

LCS for input Sequences “AGGTAB” and
“GXTXAYB” is “GTAB” of length 4.

The naive (simple) solution for this problem
is to generate all subsequences of both
given sequences and find the longest
matching subsequence. This solution is
exponential in term of time complexity. Let
us see how this problem possesses both
important properties of a Dynamic
Programming (DP).

1) Optimal
Substructure

Let the input sequences be X[0..m-1] and Y[0..n-1] of
lengths m and n respectively and let L(X[0..m-1],
Y[0..n-1]) be the length of LCS of the two sequences
Xandy.

Following is the recursive definition of L(X[0..m-1],
Y[0..n-1]).

— If the last characters of both sequences match (
if X[m-1] == Y[n-1]) then L(X[0..m-1], Y[O..n-1]) =
1 + L(X[0..m-2], Y[0..n-2])

— If the last characters of both sequences do not
match (if X[m-1] !=Y[n-1]) then L(X[0..m-1],
Y[0..n-1]) = MAX (L(X[0..m-2], Y[O0..n-1]),
L(X[0..m-1], Y[0..n-2])

OO

10/31/2014

Examples

Consider the input strings “AGGTAB” and “GXTXAYB”. Last
characters match for the strings. So, length of LCS can be
written as:

L(“AGGTAB”, “GXTXAYB”) = 1 + L(“AGGTA”, “GXTXAY”)

Consider the input strings “ABCDGH” and “AEDFHR”. Last
characters do not match for the strings. So, length of LCS
can be written as:

L(“ABCDGH”, “AEDFHR”) = MAX (L(“ABCDG”, “AEDFHR”),
L(“ABCDGH”, “AEDFH"))

— So, the LCS problem has optimal substructure property
as the main problem can be solved using solutions to
subproblems.

10/31/2014

2)
Overlapping
Subproblems

* Recursive
implementation of the
LCS problem.

10/31/2014

&

/¥ A Naive recursive implementation of LCS problem */
#include<stdio.h>
#include<stdlib.hz

int max{int a, int b);

{* Returns length of LCS for X[@..m-1], Y[@..n-1] */
int les(char *X, char *Y, int m, int n)

if (m == 8 || n == @)
return @;
if (X[m-1] == ¥[n-1])
return 1 + lcs(X, ¥, m-1, n-1};
else
return max{lcs(X, ¥, m, n-1}), lecs(X, ¥, m-1, n));

}

/¥ Utility function to get max of 2 integers */
int max{int a, int b)

return {a > b)? a : b;

¥

/* Driver program to test above function */
int main{)

char X[]
char ¥[]

"AGGTAB";
"GEATHAYE";

int m
int n

strlen{X});
strlen{¥);

printf{"Length of LCS is ¥dwn", lcs(X, ¥, my, n))3

getchar();
return @;

2) Overlapping
Subproblems

Time complexity of the above naive
recursive approach is O(2”n) in worst
case and worst case happens when all
characters of X and Y mismatch i.e.,
length of LCS is O.

Considering the previous
implementation, following is a partial
recursion tree for input strings
“AXYT” and “AYZX”

OO

10/31/2014

2) Overlapping Subproblems

* Inthe above partial recursion
tree, lcs(“AXY”, “AYZ") is being
solved twice. If we draw the
complete recursion tree, then
we can see that there are many
subproblems which are solved
again and again. So, this
problem has Overlapping \
Substructure property and Les("AY™, “AYDXC) Les("AXYT", “AVZ")
recom putation of same 1cs(":.x",yl "AYZX") lcs('.:AXY", "AYZ") lcsz"Axv", "AYZ") 125(";«va", "AY"™)
subproblems can be avoided by
either using Memoization or
Tabulation. Following is a
tabulated implementation for
the LCS problem.

lcs("AXYT", "“AYZIX")

10/31/2014 9

* Time Complexity of the above implementation is
O(mn) which is much better than the worst case

LCS Algorlth m time complexity of Naive Recursive implementation.

LCS-LENGTH(X.Y)

1 m = X.length
i v. B D € A B A 2 n = Y.length
— 3 leth[l..m,1..n]and c[0..m,0..n]be new tables
0 x ol ol ol ol ol ol o 4 fori = ltom
T N 5 c[i.0] =0
2 B 0 1|11 1 2 [«2 8 fori = 1tom
9 for j = lton
3@ o I \2) ; ; 10 if x; ==y,
N T TN 11 cli.jl=cli=1.j-1]+1
4 B ol 1] 1] 2| 2| 3les 12 bli, j] = *N\”
1 '\ 1 1) T T 13 elseif c[i — 1, j] = c[i, j — 1]
> Dl o | 2| 2] 2] 3] 3 14 cli,j] = eli =1,]]
6 A T T T\ TIN 15 bli, j] =1
0] 1] 2] 2] 3| 3| 4 16 else cli, j] = cli.j — 1]
sl RIS 17 bli.j] = <
Of 1] 2] 2] 3[4| 4 18 returnc and b

10/31/2014 10

OO

Algorithm discussed
returns only length of LCS.

. Please augment the
EXG rC I Se algorithm for printing the

LCS.

10/31/2014

Assignment # 2

¥102/1€/0T

15.4-1
Determine an LCS of (1,0,0,1,0,1,0,1) and (0,1,0,1,1,0, 1, 1,0).

15.4-2
Give pseudocode to reconstruct an LCS from the completed ¢ table and the original
sequences X = (X1, X2,...,Xpm)and Y = (yq, ¥2,..., Y») in O(m + n) time,

without using the b table.

15.4-3
Give a memoized version of LCS-LENGTH that runs in O(mn) time.

1544

Show how to compute the length of an LCS using only 2-min(, n) entries in the ¢
table plus O(1) additional space. Then show how to do the same thing, but using
min(m, n) entries plus O(1) additional space.

10/31/2014

Optimal Binary Search Trees (BSTs)

Given a sorted array keys[0.. n-1] of search keys and Construct a binary search tree of all keys such that
an array freq[0.. n-1] of frequency counts, where the total cost of all the searches would be as small
freq[i] is the number of searches to keys/i]. as possible.

10/31/2014 14

Cost of BSTs

[
(s

12

Let us first define the cost of a BST.
The cost of a BST node is level of
that node multiplied by its
frequency. Let level of root is 1.

Example 1

Input: keys[] = {10, 12}, freq[]
= {34, 50}

There can be the following
two possible BSTs.

Frequency of searches of 10
and 12 are 34 and 50
respectively.

The cost of tree | is 34*1 +
50*2 =134

The cost of tree Il is 50*1 +
34*2 =118

Cost of BSTs

12

II

Example 2

Input: keys[] = {10, 12, 20}, freq(]
= {34, 8, 50}

There can be following possible
BSTs.

Among all BSTs, cost of the fifth
BST is minimum.

Cost of the fifth BST is 1*50 +
2*34 + 3*8 =142

e Problem:
o Sorted set of keys ki, ks, ..., k,

o Key probabilities: p1,p2,...,Pn
o What tree structure has lowest expected cost?

o Cost of searching for node i: cost(k;) = depth(k;) + 1

n
Expected Cost of tree = Z cost(k;)pi

i=1

=)" (depth(k;) + 1)p;

i=1

i depth(k;)p; + i pi
i=1 i=1

(Z depth(k,-)p,-) +1
i=1

* Example 3:
I Cost of BSTs « Probability table (p; is the probability of key k;:

10/31/2014 18

Cost of BSTs

Given: k1<k2<k3<k4<k5

Tree 1:

k2/[k1,k4]/[nil,nil],[k3,k5]

cost = 0(0.20) + 1(0.25+0.20) +2(0.05+0.30) + 1 =1.15+1
Tree 2:

o k2/[k1,k5]/[nil,nil],[k4,nil)/[nil,nil],[nil,nil],[k3,nil],[nil,nil]
e cost=0(0.20) + 1(0.25+0.30) +2(0.20) + 3(0.05) + 1 =1.10 +
1

Notice that a deeper tree has expected lower cost

10/31/2014 19

Optimal Substructure

Add sum of frequenci_es from i to j (first part)
optCost(i,j) = Z freq[k] + ll‘lj_ilAl[()])fC().%'f(l'. r— 1)+ optCost(r +1,j)]

One by one try all nodes as root (r varies from i to
j in second part) and recursively calculate optimal
cost fromitor-1andr+ltoj.

optCost(0, n-1) will give final optimal result.

10/31/2014 20

Optimal
Substructure

* Following is recursive
implementation that simply
follows the recursive structure
mentioned.

10/31/2014

#include <limits.h>

// A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j);

// A recursive function to calculate cost of optimal binary search tree
int optCost(int freq[], int i, int j)

}

// Base cases

if (§ < 1) // If there are no elements in this subarray
return 0;
if (J == i) // If there is one element in this subarray

return freq[i];

// Get sum of freq[i], freq[i+1], ... freq[j]
int fsum = sum(freq, i, j);

// Initialize minimum value
int min = INT_MAX;

// One by one consider all elements as root and recursively find cost
// of the BST, compare the cost with min and update min if needed
for (int r = i; r <= j; ++r)

{
int cost = optCost(freq, i, r-1) + optCost(freq, r+l, j);
if (cost < min)
min = cost;
}

// Return minimum value
return min + fsum;

// The main function that calculates minimum cost of a Binary Search Tree.
// It mainly uses optCost() to find the optimal cost.
int optimalSearchTree(int keys[], int freq[], int n)

// Here array keys[] is assumed to be sorted in increasing order.

// If keys[] is not sorted, then add code to sort keys, and rearrange

// freq[] accordingly.
return optCost(freq, @, n-1);

21

int sum(int freq[], int i, int j)

Substructure U s

for (int k = 1; k <=j; k++)
s += freq[k];
return s;

}

/] Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20},
int freq[] = {34, 8, 56},
int n = sizeof(keys)/sizeof(keys[@]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freq, n));
return 0;

}
Qutput:

[]
‘ I O ptl m al /] A utility function to get sum of array elements freq[i] to freq[j]

Cost of Optimal BST is 142

e Time complexity of this recursive
approach is exponential.

10/31/2014 22

Overlapping Subproblems

L

* Since same subproblems are called again, this problem has
Overlapping Subproblems property.

* Optimal BST problem has both properties of a dynamic
programming problem. Like other typical Dynamic
Programming(DP) problems,

* Re-computations of same subproblems can be avoided by
constructing a temporary array cost[][] in bottom-up manner.

10/31/2014 23

http://www.geeksforgeeks.org/archives/tag/dynamic-programming

Dynamic
Programming
Solution

An auxiliary array cost[n][n] to store
the solutions of subproblems and
cost[0][n-1] will hold the final result.

All diagonal values must be filled first,
then the values which lie on the line
just above the diagonal.

In other words, we must first fill all
cost[i][i] values, then all cost[i][i+1]
values, then all cost[i][i+2] values.

The idea used in the implementation
is same as Matrix Chain Multiplication

problem.

10/31/2014

http://www.geeksforgeeks.org/archives/15553

e ea s R T e e

AP 5 -
int sum(int freq[], int i, int j);

Dynamic Programming Solution

sy mammeiee e

bt | S e A)

/* A Dynamic Programming based function that calculates minimum cost of

a Binary Search Tree. */

int optimalSearchTree(int keys[], int freq[], int n)

{

/* Create an auxiliary 2D matrix to store results of subproblems */
int cost[n][n];

/* cost[i][j] = Optimal cost of binary search tree that can be
formed from keys[i] to keys[j].
cost[@][n-1] will store the resultant cost */

// For a single key, cost is equal to frequency of the key
for (int i =0; 1 < n; i++)
cost[i][i] = freq[i];

// Now we need to consider chains of length 2, 3,
// L is chain length.
for (int L=2; L<=n; L++)
{
// i is row number in cost[][]
for (int i=0; i<=n-L+1; i++)

{
// Get column number j from row number i and chain length L
int j = i+L-1;
cost[i][j] = INT_MAX;
// Try making all keys in interval keys[i..j] as root
for (int r=i; r<=j; r++)
// ¢ = cost when keys[r] becomes root of this subtree
int ¢ = ((r > 1)? cost[i][r-1]:0) +
((r < j)? cost[r+1][j]:0) +
sum(freq, i, j);
if (c < cost[i][]j])
cost[i][]] = c;
}

return cost[@][n-1];

10/31/2014

// A utility function to get sum of array elements freq[i] to freq[j]
int sum(int freq[], int i, int j)

int s = 0,
for (int k = 1; k <=3; k++)
s += freq[k];

return s;
}
// Driver program to test above functions
int main()
{
int keys[] = {10, 12, 20};
int freq[] = {34, 8, 50},
int n = sizeof(keys)/sizeof(keys[@]);
printf("Cost of Optimal BST is %d ", optimalSearchTree(keys, freg, n))
return 0,
}
Output:

Cost of Optimal BST is 142

25

)

The BST Notes

THE TIME COMPLEXITY OF THE DP
SOLUTION IS O(N~4) WHICH CAN BE
REDUCED TO O(N”3) BY PRE-CALCULATING
SUM OF FREQUENCIES INSTEAD OF CALLING
SUM() AGAIN AND AGAIN.

10/31/2014

L

IN THIS SOLUTIONS, WE HAVE COMPUTED
OPTIMAL COST ONLY WHICH CAN BE
MODIFIED TO STORE THE STRUCTURE OF
BSTs.

AUXILIARY ARRAY OF SIZE N CAN BE USED
TO STORE THE STRUCTURE OF TREE USING
THE VALUE OF ‘R’ IN THE INNERMOST LOOP.

26

(a) (b)

Figure 159 Two binary search trees for a set of n = 5 keys with the following probabilities:

i|] o 1 2 3 4 5

Pi 0.15 010 005 010 020
g; 1005 010 005 005 005 0.10

(a) A binary search tree with expected search cost 2.80. (b) A binary search tree with expected search
cost 2.75. This tree is optimal.

10/31/2014 27

Optimal BST

Algorithm

¥

OPTIMAL-BST(p,q,n) ¢ v

1 lete[l..n+1,0..n,w[l..n+1,0..n],

and root[1..n,1..n] be new tables

2 fori=1ton+1

3 efi.i —1] = g

4 IU[i.i'— 1] = {i—1

5 forl =1ton

6 fori = lton—1+1

7 j=i+l—1

8 eli. j] = oo

9 w[l.j]=ll/‘[l.j—1]+pj+([j

10 forr =itoj

11 t=eli,r—=1]+e[r+1,j]+wl[i,]

12 if t < efi. j]

13 eli.j] =t

14 root [l.]] =r F.igu-re !5.10 Thc tables eli. j], wli, j], and root[i. j] computed by OPTIMAL-B_ST on the key
15 return e and root distribution shown in Figure 15.9. The tables are rotated so that the diagonals run horizontally.

10/31/2014 28

Quiz

Quiz will be updated on the Google Class
that you have to submit there within the
deadline.

10/31/2014 29

15.5-1

Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST (root) which,
given the table root, outputs the structure of an optimal binary search tree. For the
example in Figure 15.10, your procedure should print out the structure

k, is the root

k, is the left child of k,
d, is the left child of &,
d; is the right child of k,
Assignment # 2 ks is the right child of k,
k4 is the left child of k5
k5 is the left child of k4
d, is the left child of &,
d5 is the right child of k5
d, is the right child of k4
ds is the right child of ks

corresponding to the optimal binary search tree shown in Figure 15.9(b).

10/31/2014 30

Assignment # 2

¥102/1€/0T

15.5-3
Suppose that instead of maintaining the table wli, j], we computed the value
of w(i, j) directly from equation (15.12) in line 9 of OPTIMAL-BST and used this
computed value in line 11. How would this change affect the asymptotic running
time of OPTIMAL-BST?

15.5-4 *

Knuth [212] has shown that there are always roots of optimal subtrees such that
root[i, j — 1] <rootli, j] <root|i + 1, j]foralll <i < j < n. Use this fact to
modify the OPTIMAL-BST procedure to run in ©(n?) time.

