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LCS 
Problem

• Let us discuss Longest 
Common Subsequence 
(LCS) problem as one more 
example problem that can 
be solved using Dynamic 
Programming.
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LCS 
Problem

LCS Problem Statement: Given two 
sequences, find the length of 

longest subsequence present in 
both of them. A subsequence is a 

sequence that appears in the same 
relative order, but not necessarily 

contiguous. 

For example, “abc”, “abg”, “bdf”, 
“aeg”, ‘”acefg”, .. etc are 

subsequences of “abcdefg”. So, a 
string of length n has 2n different 

possible subsequences.

It is a classic computer science 
problem, the basis of diff (a file 

comparison program that outputs 
the differences between two files) 

and has applications in 
bioinformatics.

http://en.wikipedia.org/wiki/Diff


Examples

• LCS for input Sequences “ABCDGH” and 
“AEDFHR” is “ADH” of length 3.

• LCS for input Sequences “AGGTAB” and 
“GXTXAYB” is “GTAB” of length 4.

• The naive (simple) solution for this problem 
is to generate all subsequences of both 
given sequences and find the longest 
matching subsequence. This solution is 
exponential in term of time complexity. Let 
us see how this problem possesses both 
important properties of a Dynamic 
Programming (DP).
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1) Optimal 
Substructure

• Let the input sequences be X[0..m-1] and Y[0..n-1] of 
lengths m and n respectively and let L(X[0..m-1], 
Y[0..n-1]) be the length of LCS of the two sequences 
X and Y. 

• Following is the recursive definition of L(X[0..m-1], 
Y[0..n-1]).
– If the last characters of both sequences match ( 

if X[m-1] == Y[n-1]) then L(X[0..m-1], Y[0..n-1]) = 
1 + L(X[0..m-2], Y[0..n-2])

– If the last characters of both sequences do not 
match ( if X[m-1] != Y[n-1]) then L(X[0..m-1], 
Y[0..n-1]) = MAX ( L(X[0..m-2], Y[0..n-1]), 
L(X[0..m-1], Y[0..n-2])
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Examples

1. Consider the input strings “AGGTAB” and “GXTXAYB”. Last 
characters match for the strings. So, length of LCS can be 
written as:
L(“AGGTAB”, “GXTXAYB”) = 1 + L(“AGGTA”, “GXTXAY”)

2. Consider the input strings “ABCDGH” and “AEDFHR”. Last 
characters do not match for the strings. So, length of LCS 
can be written as:
L(“ABCDGH”, “AEDFHR”) = MAX ( L(“ABCDG”, “AEDFHR”), 
L(“ABCDGH”, “AEDFH”) )

– So, the LCS problem has optimal substructure property 
as the main problem can be solved using solutions to 
subproblems.
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2) 
Overlapping 
Subproblems
• Recursive 

implementation of the 
LCS problem. 
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2) Overlapping 
Subproblems

• Time complexity of the above naive 
recursive approach is O(2^n) in worst 
case and worst case happens when all 
characters of X and Y mismatch i.e., 
length of LCS is 0.

• Considering the previous 
implementation, following is a partial 
recursion tree for input strings 
“AXYT” and “AYZX”
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2) Overlapping Subproblems

• In the above partial recursion 
tree, lcs(“AXY”, “AYZ”) is being 
solved twice. If we draw the 
complete recursion tree, then 
we can see that there are many 
subproblems which are solved 
again and again. So, this 
problem has Overlapping 
Substructure property and 
recomputation of same 
subproblems can be avoided by 
either using Memoization or 
Tabulation. Following is a 
tabulated implementation for 
the LCS problem.
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LCS Algorithm
• Time Complexity of the above implementation is 

O(mn) which is much better than the worst case 
time complexity of Naive Recursive implementation.
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Exercise
• Algorithm discussed 

returns only length of LCS. 
Please augment the 
algorithm for printing the 
LCS.

1
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Optimal Binary Search Trees (BSTs)

Given a sorted array keys[0.. n-1] of search keys and 
an array freq[0.. n-1] of frequency counts, where 

freq[i] is the number of searches to keys[i]. 

Construct a binary search tree of all keys such that 
the total cost of all the searches would be as small 

as possible.
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Cost of BSTs

• Let us first define the cost of a BST. 
The cost of a BST node is level of 
that node multiplied by its 
frequency. Let level of root is 1.

• Example 1
– Input: keys[] = {10, 12}, freq[] 

= {34, 50} 
– There can be the following 

two possible BSTs.

– Frequency of searches of 10 
and 12 are 34 and 50 
respectively. 

– The cost of tree I is 34*1 + 
50*2 = 134 

– The cost of tree II is 50*1 + 
34*2 = 118
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Cost of BSTs

• Example 2
– Input: keys[] = {10, 12, 20}, freq[] 

= {34, 8, 50}
– There can be following possible 

BSTs.

– Among all BSTs, cost of the fifth 
BST is minimum. 

– Cost of the fifth BST is 1*50 + 
2*34 + 3*8 = 142
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Cost of 
BSTs
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Cost of BSTs
• Example 3:
• Probability table (pi is the probability of key ki: 
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i 1 2 3 4 5

Ki K1 K2 K3 K4 K5

Pi 0.25 0.20 0.05 0.20 0.30



Cost of BSTs

• Given: k1<k2<k3<k4<k5 
• Tree 1: 
• k2/[k1,k4]/[nil,nil],[k3,k5]
• cost = 0(0.20) + 1(0.25+0.20) +2(0.05+0.30) + 1 = 1.15 + 1
• Tree 2:
• k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]
• cost = 0(0.20) + 1(0.25+0.30) +2(0.20) + 3(0.05) + 1 = 1.10 + 

1

• Notice that a deeper tree has expected lower cost 



Optimal Substructure

Add sum of frequencies from i to j (first part)

One by one try all nodes as root (r varies from i to 
j in second part) and recursively calculate optimal 
cost from i to r-1 and r+1 to j.

optCost(0, n-1) will give final optimal result.
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Optimal 
Substructure

• Following is recursive 
implementation that simply 
follows the recursive structure 
mentioned.
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Optimal 
Substructure

• Time complexity of this recursive 
approach is exponential. 
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Overlapping Subproblems

• Since same subproblems are called again, this problem has 
Overlapping Subproblems property. 

• Optimal BST problem has both properties of a dynamic 
programming problem. Like other typical Dynamic 
Programming(DP) problems,

• Re-computations of same subproblems can be avoided by 
constructing a temporary array cost[][] in bottom-up manner.
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http://www.geeksforgeeks.org/archives/tag/dynamic-programming


Dynamic 
Programming 

Solution
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An auxiliary array cost[n][n] to store 
the solutions of subproblems and 
cost[0][n-1] will hold the final result. 

All diagonal values must be filled first, 
then the values which lie on the line 
just above the diagonal. 

In other words, we must first fill all 
cost[i][i] values, then all cost[i][i+1] 
values, then all cost[i][i+2] values. 

The idea used in the implementation 
is same as Matrix Chain Multiplication 
problem. 

http://www.geeksforgeeks.org/archives/15553


Dynamic Programming Solution
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The BST Notes
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THE TIME COMPLEXITY OF THE DP 
SOLUTION IS O(N^4) WHICH CAN BE 

REDUCED TO O(N^3) BY PRE-CALCULATING 
SUM OF FREQUENCIES INSTEAD OF CALLING 

SUM() AGAIN AND AGAIN.

IN THIS SOLUTIONS, WE HAVE COMPUTED 
OPTIMAL COST ONLY WHICH CAN BE 

MODIFIED TO STORE THE STRUCTURE OF 
BSTs. 

AUXILIARY ARRAY OF SIZE N CAN BE USED 
TO STORE THE STRUCTURE OF TREE USING 

THE VALUE OF ‘R’ IN THE INNERMOST LOOP.



Example 
Optimal 
BST
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Optimal BST 
Algorithm
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Quiz will be updated on the Google Class 
that you have to submit there within the 
deadline.

Quiz
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