
Advance
Analysis of
Algorithms

• Dr. Qaiser Abbas
• Computer Science & IT
• University of Sargodha
• qaiser.abbas@uos.edu.pk

1

LCS
Problem

• Let us discuss Longest
Common Subsequence
(LCS) problem as one more
example problem that can
be solved using Dynamic
Programming.

2

LCS
Problem

LCS Problem Statement: Given two
sequences, find the length of

longest subsequence present in
both of them. A subsequence is a

sequence that appears in the same
relative order, but not necessarily

contiguous.

For example, “abc”, “abg”, “bdf”,
“aeg”, ‘”acefg”, .. etc are

subsequences of “abcdefg”. So, a
string of length n has 2n different

possible subsequences.

It is a classic computer science
problem, the basis of diff (a file

comparison program that outputs
the differences between two files)

and has applications in
bioinformatics.

http://en.wikipedia.org/wiki/Diff

Examples

• LCS for input Sequences “ABCDGH” and
“AEDFHR” is “ADH” of length 3.

• LCS for input Sequences “AGGTAB” and
“GXTXAYB” is “GTAB” of length 4.

• The naive (simple) solution for this problem
is to generate all subsequences of both
given sequences and find the longest
matching subsequence. This solution is
exponential in term of time complexity. Let
us see how this problem possesses both
important properties of a Dynamic
Programming (DP).

10/31/2014 4

1) Optimal
Substructure

• Let the input sequences be X[0..m-1] and Y[0..n-1] of
lengths m and n respectively and let L(X[0..m-1],
Y[0..n-1]) be the length of LCS of the two sequences
X and Y.

• Following is the recursive definition of L(X[0..m-1],
Y[0..n-1]).
– If the last characters of both sequences match (

if X[m-1] == Y[n-1]) then L(X[0..m-1], Y[0..n-1]) =
1 + L(X[0..m-2], Y[0..n-2])

– If the last characters of both sequences do not
match (if X[m-1] != Y[n-1]) then L(X[0..m-1],
Y[0..n-1]) = MAX (L(X[0..m-2], Y[0..n-1]),
L(X[0..m-1], Y[0..n-2])

5

Examples

1. Consider the input strings “AGGTAB” and “GXTXAYB”. Last
characters match for the strings. So, length of LCS can be
written as:
L(“AGGTAB”, “GXTXAYB”) = 1 + L(“AGGTA”, “GXTXAY”)

2. Consider the input strings “ABCDGH” and “AEDFHR”. Last
characters do not match for the strings. So, length of LCS
can be written as:
L(“ABCDGH”, “AEDFHR”) = MAX (L(“ABCDG”, “AEDFHR”),
L(“ABCDGH”, “AEDFH”))

– So, the LCS problem has optimal substructure property
as the main problem can be solved using solutions to
subproblems.

6

2)
Overlapping
Subproblems
• Recursive

implementation of the
LCS problem.

10/31/2014 7

2) Overlapping
Subproblems

• Time complexity of the above naive
recursive approach is O(2^n) in worst
case and worst case happens when all
characters of X and Y mismatch i.e.,
length of LCS is 0.

• Considering the previous
implementation, following is a partial
recursion tree for input strings
“AXYT” and “AYZX”

8

2) Overlapping Subproblems

• In the above partial recursion
tree, lcs(“AXY”, “AYZ”) is being
solved twice. If we draw the
complete recursion tree, then
we can see that there are many
subproblems which are solved
again and again. So, this
problem has Overlapping
Substructure property and
recomputation of same
subproblems can be avoided by
either using Memoization or
Tabulation. Following is a
tabulated implementation for
the LCS problem.

10/31/2014 9

LCS Algorithm
• Time Complexity of the above implementation is

O(mn) which is much better than the worst case
time complexity of Naive Recursive implementation.

10/31/2014 10

Exercise
• Algorithm discussed

returns only length of LCS.
Please augment the
algorithm for printing the
LCS.

1
1

Assignment # 210/31/2014

12

Break

10/31/2014 13

Optimal Binary Search Trees (BSTs)

Given a sorted array keys[0.. n-1] of search keys and
an array freq[0.. n-1] of frequency counts, where

freq[i] is the number of searches to keys[i].

Construct a binary search tree of all keys such that
the total cost of all the searches would be as small

as possible.

10/31/2014 14

Cost of BSTs

• Let us first define the cost of a BST.
The cost of a BST node is level of
that node multiplied by its
frequency. Let level of root is 1.

• Example 1
– Input: keys[] = {10, 12}, freq[]

= {34, 50}
– There can be the following

two possible BSTs.

– Frequency of searches of 10
and 12 are 34 and 50
respectively.

– The cost of tree I is 34*1 +
50*2 = 134

– The cost of tree II is 50*1 +
34*2 = 118

10/31/2014 15

Cost of BSTs

• Example 2
– Input: keys[] = {10, 12, 20}, freq[]

= {34, 8, 50}
– There can be following possible

BSTs.

– Among all BSTs, cost of the fifth
BST is minimum.

– Cost of the fifth BST is 1*50 +
2*34 + 3*8 = 142

10/31/2014 16

Cost of
BSTs

10/31/2014 17

Cost of BSTs
• Example 3:
• Probability table (pi is the probability of key ki:

10/31/2014 18

i 1 2 3 4 5

Ki K1 K2 K3 K4 K5

Pi 0.25 0.20 0.05 0.20 0.30

Cost of BSTs

• Given: k1<k2<k3<k4<k5
• Tree 1:
• k2/[k1,k4]/[nil,nil],[k3,k5]
• cost = 0(0.20) + 1(0.25+0.20) +2(0.05+0.30) + 1 = 1.15 + 1
• Tree 2:
• k2/[k1,k5]/[nil,nil],[k4,nil]/[nil,nil],[nil,nil],[k3,nil],[nil,nil]
• cost = 0(0.20) + 1(0.25+0.30) +2(0.20) + 3(0.05) + 1 = 1.10 +

1

• Notice that a deeper tree has expected lower cost

Optimal Substructure

Add sum of frequencies from i to j (first part)

One by one try all nodes as root (r varies from i to
j in second part) and recursively calculate optimal
cost from i to r-1 and r+1 to j.

optCost(0, n-1) will give final optimal result.

10/31/2014 20

Optimal
Substructure

• Following is recursive
implementation that simply
follows the recursive structure
mentioned.

10/31/2014 21

Optimal
Substructure

• Time complexity of this recursive
approach is exponential.

10/31/2014 22

Overlapping Subproblems

• Since same subproblems are called again, this problem has
Overlapping Subproblems property.

• Optimal BST problem has both properties of a dynamic
programming problem. Like other typical Dynamic
Programming(DP) problems,

• Re-computations of same subproblems can be avoided by
constructing a temporary array cost[][] in bottom-up manner.

10/31/2014 23

http://www.geeksforgeeks.org/archives/tag/dynamic-programming

Dynamic
Programming

Solution

10/31/2014 24

An auxiliary array cost[n][n] to store
the solutions of subproblems and
cost[0][n-1] will hold the final result.

All diagonal values must be filled first,
then the values which lie on the line
just above the diagonal.

In other words, we must first fill all
cost[i][i] values, then all cost[i][i+1]
values, then all cost[i][i+2] values.

The idea used in the implementation
is same as Matrix Chain Multiplication
problem.

http://www.geeksforgeeks.org/archives/15553

Dynamic Programming Solution

10/31/2014 25

The BST Notes

10/31/2014 26

THE TIME COMPLEXITY OF THE DP
SOLUTION IS O(N^4) WHICH CAN BE

REDUCED TO O(N^3) BY PRE-CALCULATING
SUM OF FREQUENCIES INSTEAD OF CALLING

SUM() AGAIN AND AGAIN.

IN THIS SOLUTIONS, WE HAVE COMPUTED
OPTIMAL COST ONLY WHICH CAN BE

MODIFIED TO STORE THE STRUCTURE OF
BSTs.

AUXILIARY ARRAY OF SIZE N CAN BE USED
TO STORE THE STRUCTURE OF TREE USING

THE VALUE OF ‘R’ IN THE INNERMOST LOOP.

Example
Optimal
BST

10/31/2014 27

Optimal BST
Algorithm

10/31/2014 28

Quiz will be updated on the Google Class
that you have to submit there within the
deadline.

Quiz

10/31/2014 29

Assignment # 2

Assignment # 210/31/2014

31

