
Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science & IT,

University of Sargodha, Sargodha, 40100, Pakistan
qaiser.abbas@uos.edu.pk

Material parIally adopted from the following link:
h"p://www.cse.unl.edu/~goddard/Courses/CSCE310J

mailto:qaiser.abbas@uos.edu.pk

Edit Distance

• DNA Sequence Comparison: First Success Story
– Finding sequence similarities with genes of

known function is a common approach to infer a
newly sequenced gene’s function

– In 1984 Russell Doolittle and colleagues found
similarities between cancer-causing gene and
normal growth factor (PDGF) gene.

06/02/2015 2

Edit Distance

06/02/2015 3

Edit Distance

Problem: Given two strings of size m, n and set of
operaOons subsOtuOon (S), insert (I) and delete (D) all
at equal cost. Find minimum number of edits
(operaOons) required to convert one string into
another.

06/02/2015 4

Minimum Edit Distance

• The minimum edit distance between two strings is the minimum number of edit
operations (insert, delete, substitution) needed to transform one string into
another.

• For example the gap between “intention” and “execution” is 5 operations, which
can be represented in three ways as follows:

06/02/2015 5

Minimum Edit Distance

• Applica'ons
– could be used for mulI-typo correcIon
– used in Machine TranslaIon EvaluaIon (MTEval)

• Cost and Weight models
– Levenshtein (Cost)

• inserIon, deleIon and subsItuIon all have unit cost
– Levenshtein (alternate) (Cost)

• inserIon, deleIon have unit cost
• subsItuIon is twice as expensive
• substuon = one insert followed by one delete

– Typewriter (Weight)
• inserIon, deleIon and subsItuIon all have unit cost
• modified by key proximity

06/02/2015 6

Minimum Edit Distance

• Dynamic Programming
– divide-and-conquer

• to solve a problem we divide it into sub-problems

– sub-problems may be repeated
• don’t want to re-solve a sub-problem the 2nd time around

– idea: put solutions to sub-problems in a table
• and just look up the solution 2nd time around, thereby saving time
• memoization

06/02/2015 7

Minimum Edit Distance

• Levenshtein (1st Version)
• D(i,j) = score of best alignment

from s1..si to t1..tj

• Min=

06/02/2015 8

i

j

D(i-1,j-1)+d(si,tj) //substitute
D(i-1,j)+1 //insert
D(i,j-1)+1//delete

Minimum Edit Distance

06/02/2015 9

Minimum Edit Distance

06/02/2015 10

O(1) each

O(n)+O(m)

O(nm)

Minimum Edit Distance

06/02/2015 11

• Levenshtein (2nd Version)

Knapsack Problem

06/02/2015 12

Knapsack Problem

06/02/2015 13

• Given some items(boxes), pack the knapsack to get the
maximum total value (dollars). Each item has some weight
(kg) and some value (dollars). Total weight that we can carry is
no more than some fixed number W (15kg). So we must
consider weights of items as well as their values.

• 3 Yellow, 3 Grey

Knapsack Problem

06/02/2015 14

• Two versions of the problem:
1. 0-1 knapsack problem
• Items are indivisible; you either take an item

or not. (Dynamic Approach)
2. Fractional knapsack problem
• Items are divisible: you can take any fraction

of an item. (Greedy Approach)

0-1 Knapsack Problem

06/02/2015 15

• Given a knapsack with maximum capacity W, and a set S
consisting of n items

• Each item i has some weight wi and benefit value bi (all
wi and W are integer values)

• Problem: How to pack the knapsack to achieve maximum
total value of packed items?

– The problem is called a “0-1” problem, because each
item must be entirely accepted or rejected.

max bi
i∈T
∑ subject to wi≤W

i∈T
∑

0-1 Knapsack Problem

06/02/2015 16

• Brute-force approach:
– For n items, there are 2n possible combinations.
– Go through all combinations and find the one with

maximum value and with total weight ≤ W
– Running time will be O(2n)

• Dynamic programming approach:
– Can do better using dynamic programming by

identifying the sub-problems.
– Let’s try this:

If items are labeled 1..n, then a subproblem would be
to find an optimal solution for
Sk = {items labeled 1, 2, .. k}

Defining a Subproblem

06/02/2015 17

• If items are labeled 1..n, then a subproblem would
be to find an opOmal soluOon for Sk = {items labelled
1, 2, .. k}

• This is a reasonable subproblem definiOon.
• The quesOon is: can we describe the final soluOon

(Sn) in terms of subproblems (Sk)?
• Unfortunately, we can’t do that.

Defining a Subproblem

06/02/2015 18

Defining a Subproblem

06/02/2015 19

• As we have seen, the solution for S4 is not part of the
solution for S5

• So our definition of a subproblem is flawed and we
need another one!

• Let’s add another parameter: w, which will represent
the exact weight for each subset of items

• The subproblem then will be to compute B[k,w]

Defining a Subproblem

06/02/2015 20

Defining a Subproblem

06/02/2015 21

0-1 Knapsack Problem

06/02/2015 22

Running Time is O(nW), while the brute force O(2n)

0-1 Knapsack Problem

06/02/2015 23

• Let’s run our algorithm on the following data:
• n = 4 (# of elements)

W = 5 (max weight)
• Elements (weight, benefit):

–(2,3), (3,4), (4,5), (5,6)

0-1 Knapsack Problem

06/02/2015 24

• Let’s run our algorithm on the following data:
• n = 4 (# of elements)

W = 5 (max weight)
• Elements (weight, benefit):
– (2,3), (3,4), (4,5), (5,6)

0-1 Knapsack Problem

06/02/2015 25

0-1 Knapsack Problem

06/02/2015 26

0-1 Knapsack Problem

06/02/2015 27

0-1 Knapsack Problem

06/02/2015 28

0-1 Knapsack Problem

06/02/2015 29

0-1 Knapsack Problem

06/02/2015 30

0-1 Knapsack Problem

06/02/2015 31

0-1 Knapsack Problem

• This algorithm only finds the max possible value that
can be carried in the knapsack

• » I.e., the value in B[n,W]
• To know the items that make this maximum value, an

addition to this algorithm is necessary.

06/02/2015 32

How to find actual Knapsack Items

• All of the informaNon we need is in the table.
• B[n,W] is the maximal value of items that can be placed

in the Knapsack.
• Let i=n and k=W

if B[i,k] ≠ B[i−1,k] then
mark the ith item as in the knapsack
i = i−1, k = k-wi

else
i = i−1 // Assume the ith item is not in the knapsack

// Could it be in the opEmally packed knapsack?

06/02/2015 33

06/02/2015 34

06/02/2015 35

06/02/2015 36

06/02/2015 37

06/02/2015 38

06/02/2015 39

Fractional Knapsack Problem

• We have n objects and a knapsack. The ith object has
positive weight wi and positive unit value vi. The
knapsack capacity is C.

• We wish to select a set of proportions of objects to
put in the knapsack so that the total values is
maximum and without breaking the knapsack.

06/02/2015 40

Frac%onal Knapsack Problem

Greedy-fractional-knapsack (w, v, W)
FOR i =1 to n

do x[i] =0
weight = 0
while weight < W

do i = best remaining item
IF weight + w[i] ≤ W

then x[i] = 1
weight = weight + w[i]

else
x[i] = (W - weight) / w[i]
weight = W

return x

06/02/2015 41

Fractional Knapsack Problem

• Example:

• Select always the most valuable object

– Total selected weight 100 and total value 146.
• Select always the lighter object

– Total selected weight 100 and total value 156.

06/02/2015 42

FracBonal Knapsack Problem

• Select always the object with highest ratio value/weight

– Total selected weight 100 and total value 164.

06/02/2015 43

Fractional Knapsack Problem

• The greedy algorithm that always selects the most valuable
object does not always find an optimal solution to the
Fractional Knapsack problem.

• The greedy algorithm that always selects the lighter object
does not always find an optimal solution to the Fractional
Knapsack problem.

• The greedy algorithm that always selects the object with
better ratio value/weight always finds an optimal solution to
the Fractional Knapsack problem.

06/02/2015 44

Homework # 7

06/02/2015 45

