
Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science & IT,

University of Sargodha, Sargodha, 40100, Pakistan
qaiser.abbas@uos.edu.pk

Floyd-Warshall Algorithm (Background)
• For finding shortest paths between all pairs of vertices,

run Bellman-Ford or Dijkstra's algorithm for each vertex
in the graph. Thus, the run times for these strategies
would be (for dense graphs where |E| ≈ |V|2):
– Bellman-Ford:

–|V| O(VE) ≈ O(V4)
– Dijkstra

–|V| O(V2 + E) ≈ O(V3)
–|V| O(V lg V + E) ≈ O(V2 lg V + VE)

• For dense graphs an often more efficient algorithm (with
very low hidden constants) for finding all pairs shortest
paths is the Floyd-Warshall algorithm.

30/01/2015

Floyd-Warshall Algorithm

• The working of Floyd-Warshall algorithm is based on
the property of intermediate vertices of a shortest
path. An intermediate vertex for a path p = <v1, v2, ...,
vj> is any vertex other than v1 or vj.

• If the vertices of a graph G are indexed by {1, 2, ...,
n}, then consider a subset of vertices {1, 2, ..., k}.
Assume p is a minimum weight path from vertex i to
vertex j whose intermediate vertices are drawn from
the subset {1, 2, ..., k}.

30/01/2015

Floyd-Warshall Algorithm

• If we consider vertex k on the path, then either:
– k is not an intermediate vertex of p (i.e., is not

used in the minimum weight path)
⇒ all intermediate vertices are in {1, 2, ..., k-1}

– k is an intermediate vertex of p (i.e., is used in the
minimum weight path)
⇒ we can divide p at k giving two subpaths p1
and p2 giving vi ↝ k ↝ vj

30/01/2015

Floyd-Warshall Algorithm

30/01/2015

Floyd-Warshall Algorithm
• For D0

ij matrix entries, if i=j, then D0
ij= 0 and if i≠j,

then D0
ij = ∞ if there is no any edge.

• If a quantity d(k)
ij as the minimum weight of the path

from vertex i to vertex j with intermediate vertices
drawn from the set {1, 2, ..., k}, we have the
following recursive solution

• Optimal values (when k = n) in a matrix as

30/01/2015

Floyd-Warshall Algorithm

• Different methods for constructing shortest paths in the
Floyd- Warshall algorithm.
– One way, is to compute the matrix D of shortest-path

weights and then construct the predecessor matrix Π
from the D matrix.

– Alternatively, we can compute the predecessor matrix
Π while the algorithm computes the matrices D(k).
Specifically, we compute a sequence of matrices Π(0),
Π(1), … , Π(n),where Π = Π(n) and we define πij

(k) as the
predecessor of vertex j on a shortest path from vertex
i with all intermediate vertices in the set from {1,2,…k}

30/01/2015

Floyd-Warshall Algorithm

• We can give a recursive formulation of πij
(k) When k=0, a shortest

path from i to j has no intermediate vertices at all. Thus,

• For k ≥ 1, if we take the path i à k à j, where k ≠ j, then the
predecessor of j we choose is the same as the predecessor of j we
chose on a shortest path from k with all intermediate vertices in the
set {1,2,…k}. Otherwise, we choose the same predecessor of j that
we chose on a shortest path from i with all intermediate vertices in
the set {1,2,…k-1}. Formally, for k≥1

• .

30/01/2015

Floyd-Warshall Algorithm

30/01/2015

Floyd-Warshall Algorithm

• Basically, the algorithm works by repeatedly
exploring paths between every pair using each vertex
as an intermediate vertex.

• Since Floyd-Warshall is simply three (tight) nested
loops, the run time is clearly O(V3).

30/01/2015

Floyd-Warshall Algorithm

• Example:

30/01/2015

Floyd-Warshall Algorithm

• Example:
– Initialization: (k = 0)

30/01/2015

Floyd-Warshall Algorithm

• Example:
– Iteration 1: (k = 1) Shorter paths from 2 ↝ 3 and 2
↝ 4 are found through vertex 1

30/01/2015

Floyd-Warshall Algorithm

• Example:
– Iteration 2: (k = 2) Shorter paths from 4 ↝ 1, 5 ↝

1, and 5 ↝ 3 are found through vertex 2

30/01/2015

Floyd-Warshall Algorithm

• Example:
– Iteration 3: (k = 3) No shorter paths are found

through vertex 3

30/01/2015

Floyd-Warshall Algorithm

• Example:
– Iteration 4: (k = 4) Shorter paths from 1 ↝ 2, 1 ↝

3, 2 ↝ 3, 3 ↝ 1, 3 ↝ 2, 5 ↝ 1, 5 ↝ 2, 5 ↝ 3 are
found through vertex 4

30/01/2015

Floyd-Warshall Algorithm

• Example:
– Iteration 5: (k = 5) No shorter paths are found

through vertex 5

30/01/2015

Floyd-Warshall Algorithm

• Example:
– The final shortest paths for all pairs is given by

30/01/2015

Transitive Closure

• Floyd-Warshall can be used to determine whether or
not a graph has transitive closure, i.e., whether or
not there are paths between all vertices.
– Assign all edges in the graph to have weight = 1
– Run Floyd-Warshall
– Check if all dij < n

• This procedure can implement a slightly more
efficient algorithm through the use of logical
operators rather than min() and +.

30/01/2015

Johnson's Algorithm

• Floyd-Warshall is efficient for dense graphs, if the
graph is sparse then an alternative all pairs shortest
path strategy known as Johnson's algorithm can be
used.

• This algorithm uses Bellman-Ford to detect any
negative weight cycles and then reweighting the
edges to allow Dijkstra's algorithm to find the
shortest paths. Has running time O(V2 lg V + VE).

• The problem is to find all pairs shortest paths in a
given weighted directed Graph and weights may be
negative.

30/01/2015

Johnson's Algorithm

• If we apply Dijkstra’s Single Source shortest path
algorithm O(Vlog V) for every vertex, considering
every vertex as source, we can find all pair shortest
paths in O(V*VLogV) time.

• So, Dijkstra’s SSSP seems to be a better option than
Floyd Warshell O(V3), but the problem with Dijkstra’s
algorithm is, it doesn’t work for negative weight
edge.

• The idea of Johnson’s algorithm is to re-weight all
edges and make them all positive, then apply
Dijkstra’s algorithm for every vertex.

30/01/2015

http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/
http://www.geeksforgeeks.org/dynamic-programming-set-16-floyd-warshall-algorithm/

Johnson's Algorithm

• How to transform a given graph to a graph with all non-
negative weight edges?

• Adding weight to all edges. Unfortunately, this doesn’t work.
• In a weighted graph, assume that the shortest path from a

source ‘s’ to a destination ‘t’ is correctly calculated using a
shortest path algorithm. Is the following statement true?

– If we increase weight of every edge by 1, the shortest path
always remains same.

(A) Yes
(B) No

– Answer: (B) (Explanation is on next slide)

30/01/2015

Johnson's Algorithm

• Explanation: See the following counterexample.
• There are 4 edges sàa, aàb, bàt and sàt of wights 1, 1, 1

and 4 respectively. The shortest path from s to t is s-a, a-b, b-t.
If we increase weight of every edge by 1, the shortest path
changes to s-t.

• So, If there are multiple paths from a vertex u to v, then all
paths must be increased by same amount, so that the
shortest path remains the shortest in the transformed graph.

30/01/2015

Johnson's Algorithm

• The idea of Johnson’s algorithm is to assign a weight
to every vertex. Let the weight assigned to vertex u
be h[u].

• We reweight edges using vertex weights. For
example, for an edge (u, v) of weight w(u, v), the new
weight becomes w(u, v) + h[u] – h[v].

• The great thing about this reweighting is, all set of
paths between any two vertices are increased by
same amount and all negative weights become non-
negative.

30/01/2015

Johnson's Algorithm

• How do we calculate h[] values?
– Bellman-Ford algorithm is used for this purpose.

Following is the complete algorithm. A new vertex
is added to the graph and connected to all existing
vertices. The shortest distance values from new
vertex to all existing vertices are h[] values.

30/01/2015

http://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/

Johnson's Algorithm

• Theory of Algorithm
1) Let the given graph be G. Add a new vertex s to the graph,
add edges from new vertex to all vertices of G. Let the
modified graph be G’.
2) Run Bellman-Ford algorithm on G’ with s as source. Let the
distances calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If
we find a negative weight cycle, then return. Note that the
negative weight cycle cannot be created by new vertex s as
there is no edge to s. All edges are from s.
3) Reweight the edges of original graph. For each edge (u, v),
assign the new weight as “original weight + h[u] – h[v]”.
4) Remove the added vertex s and run Dijkstra’s algorithm for
every vertex.

30/01/2015

http://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/
http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/

Johnson's Algorithm

30/01/2015

Johnson's Algorithm

• How does the transformation ensure nonnegative
weight edges?

• The following property is always true about h[]
values as they are shortest distances.
– h[v] <= h[u] + w(u, v) The property simply means,

shortest distance from s to v must be smaller than
or equal to shortest distance from s to u plus
weight of edge (u, v).

– The new weights are w(u, v) + h[u] - h[v]. The
value of the new weights must be nonnegative
because of the inequality "h[v] <= h[u] + w(u, v)".

30/01/2015

Johnson's Algorithm

• Example:
– Let us consider the following graph.

– We add a source s and add edges from s to all
vertices of the original graph. In the following
diagram s is 4.

30/01/2015

Johnson's Algorithm

• We calculate the shortest distances from 4 to all other
vertices (0,1,2,3) using Bellman-Ford algorithm as h[] =
{0, -5, -1, 0}.. Then Remove the source vertex 4 and
reweight the edges using formula. w(u, v) = w(u, v) + h[u]
- h[v].

• Since all weights are positive now, we can run Dijkstra's
shortest path algorithm for every vertex as source.

30/01/2015

Johnson's Algorithm

• Time Complexity: The main steps in algorithm are
Bellman Ford Algorithm called once and Dijkstra
called V times.

• Time complexity of Bellman Ford is O(VE) and time
complexity of Dijkstra is O(VLogV). So overall time
complexity is O(V2log V + VE).

• The time complexity of Johnson's algorithm becomes
same as Floyd Warshell when the graphs is complete
(For a complete graph E = O(V2). But for sparse
graphs, the algorithm performs much better than
Floyd Warshell.

30/01/2015

http://www.geeksforgeeks.org/dynamic-programming-set-16-floyd-warshall-algorithm/
http://www.geeksforgeeks.org/dynamic-programming-set-16-floyd-warshall-algorithm/

Example Run (Read it Yourself)

• Step1: Take any source vertex's' outside the graph
and make distance from's' to every vertex '0’.

• Step2: Apply Bellman-Ford Algorithm and calculate
minimum weight on each vertex.

30/01/2015

Example Run (Read it Yourself)

• Step3:
– w (a, b) = w (a, b) + h (a) - h (b) = -3 + (-1) - (-4) = 0
– w (b, a) = w (b, a) + h (b) - h (a) = 5 + (-4) - (-1) = 2
– w (b, c) = w (b, c) + h (b) - h (c) = 3 + (-4) - (-1) = 0
– w (c, a) = w (c, a) + h (c) - h (a) = 1 + (-1) - (-1) = 1
– w (d, c) = w (d, c) + h (d) - h (c) = 4 + 0 - (-1) = 5
– w (d, a) = w (d, a) + h (d) - h (a) = -1 + 0 - (-1) = 0
– w (a, d) = w (a, d) + h (a) - h (d) = 2 + (-1) - 0 = 1

30/01/2015

Example Run (Read it Yourself)

• Step 4: Now all edge weights are positive and now
we can apply Dijkstra's Algorithm on each vertex and
make a matrix corresponds to each vertex in a graph

• Case 1: 'a' as a source vertex

30/01/2015

Example Run (Read it Yourself)

• Case 2: 'b' as a source vertex

• Case 3: 'c' as a source vertex

30/01/2015

Example Run (Read it Yourself)

• Case4:'d' as source vertex

30/01/2015

Example Run (Read it Yourself)

• Step5:
• duv ← δ (u, v) + h (v) - h (u)

d (a, a) = 0 + (-1) - (-1) = 0
d (a, b) = 0 + (-4) - (-1) = -3
d (a, c) = 0 + (-1) - (-1) = 0
d (a, d) = 1 + (0) - (-1) = 2
d (b, a) = 1 + (-1) - (-4) = 4
d (b, b) = 0 + (-4) - (-4) = 0
d (c, a) = 1 + (-1) - (-1) = 1
d (c, b) = 1 + (-4) - (-1) = -2
d (c, c) = 0
d (c, d) = 2 + (0) - (-1) = 3
d (d, a) = 0 + (-1) - (0) = -1
d (d, b) = 0 + (-4) - (0) = -4
d (d, c) = 0 + (-1) - (0) = -1
d (d, d) = 0

30/01/2015

Homework #6

30/01/2015

Homework #6

30/01/2015

