Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science & IT,
University of Sargodha, Sargodha, 40100, Pakistan
gaiser.abbas@uos.edu.pk

Floyd-Warshall Algorithm (Background)

For finding shortest paths between all pairs of vertices,
run Bellman-Ford or Dijkstra's algorithm for each vertex
in the graph. Thus, the run times for these strategies
would be (for dense graphs where |E| = | V|?):

— Bellman-Ford:
— | V] O(VE) = O(V*)
— Dijkstra
— | V| O(V? + E) = O(V?)
—|V| O(VIgV+E)=O(V?Ig V+ VE)

For dense graphs an often more efficient algorithm (with
very low hidden constants) for finding all pairs shortest
paths is the Floyd-Warshall algorithm.

Floyd-Warshall Algorithm

* The working of Floyd-Warshall algorithm is based on
the property of intermediate vertices of a shortest
path. An intermediate vertex for a path p =<v,, v,, ...,
v;> is any vertex other than v, or v,.

* If the vertices of a graph G are indexed by {1, 2, ...,
n}, then consider a subset of vertices {1, 2, ..., k}.
Assume p is a minimum weight path from vertexi to
vertex j whose intermediate vertices are drawn from
the subset {1, 2, ..., k}.

Floyd-Warshall Algorithm

* If we consider vertex k on the path, then either:

— k is not an intermediate vertex of p (i.e., is not
used in the minimum weight path)

= all intermediate vertices arein {1, 2, ..., k-1}

— k is an intermediate vertex of p (i.e., is used in the
minimum weight path)

= we can divide p at k giving two subpaths p,
and p, giving v; ™ k

30/01/2015

Floyd-Warshall Algorithm

all intermediate vertices in {1,2,..., k —1} all intermediate vertices in {1,2, ..., k—1}

— T —— T
P1 e)2

p: all intermediate vertices in {1,2, ..., k}

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered
intermediate vertex of p. Path p, the portion of path p from vertex i to vertex k, has all intermediate
vertices in the set {1,2,..., k — 1}. The same holds for path p, from vertex k to vertex j.

30/01/2015

Floyd-Warshall Algorithm

* For DY matrix entries, if i=j, then D%= 0 and if i#],
then DY; = o< if there is no any edge.

* If a quantity d'); as the minimum weight of the path
from vertex i to vertexl with intermediate vertices
drawn from the set {1, 2, ..., k}, we have the
following recursive solution

w,",- lfk = (\

min (4", d " +d V) ifk>1.

 Optimal values (when k = n) in a matrix as

D™ = (d;;") = 8(i, j)

d® =

Floyd-Warshall Algorithm

* Different methods for constructing shortest paths in the
Floyd- Warshall algorithm.

— One way, is to compute the matrix D of shortest-path
weights and then construct the predecessor matrix I
from the D matrix.

— Alternatively, we can compute the predecessor matrix
N while the algorithm computes the matrices D,
Specifically, we compute a sequence of matrices M),
N, ..., N, where N=N"and we define ;¥ as the
predecessor of vertex j on a shortest path from vertex
i with all intermediate vertices in the set from {1,2,...k}

Floyd-Warshall Algorithm

* We can give a recursive formulation of m;¥) When k=0, a shortest
path from i to j has no intermediate vertices at all. Thus,

0) _
I ifi # j and w;; < 00 .

* Fork=>1, if we take the path i 2 k = j, where k # j, then the
predecessor of j we choose is the same as the predecessor of j we
chose on a shortest path from k with all intermediate vertices in the
set {1,2,...k}. Otherwise, we choose the same predecessor of j that
we chose on a shortest path from i with all intermediate vertices in

the set {1,2,...k-1}. Formally, for k>1
(k—1) .p 3(k—1) 7(k—1) 7 (k—1)
(k) _ % TC; lfdl-/- Edik +dkj i

Ul w0 s bl

{NIL ifi = j orw;; =00,

[] . 7.[

Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)
1. n = W.rows

2. DO =w

3. 0 = np®;; = NIL if i=j or wjj = ®
= 1 if i#j and wjy < ©

4 for k = 1 ton

5 let D(¥) = (d(¥);5) be a new nxn matrix

6. for 1 = 1 ton

7 for j =1 ton

8 d*ij; = min(d™-1yy, %Dy + dk1y)

9. if deDyy = dlE=D g+ atk=1)y,

10. mk) ;s = k-1

11. else

12. mk) s = k-1,

30/01/2015 13. return D(n)

Floyd-Warshall Algorithm

e Basically, the algorithm works by repeatedly
exploring paths between every pair using each vertex
as an intermediate vertex.

e Since Floyd-Warshall is simply three (tight) nested
loops, the run time is clearly O(V3).

30/0

Floyd-Warshall Algorithm

 Example:

1/2015

Floyd-Warshall Algorithm

 Example:

— Initialization: (k = 0)

D n
1 2 3 4 5 1 2 3 4 5

@ @ 1o |w |6 |3 || 1|/ | |1]1]|
2|3 |o|w|w|wl| 22| /|||
@3:»0002«»3///3/

sl |1 |10 || al /| a|a]|]|

o O o

30/01/2015

Floyd-Warshall Algorithm

 Example:

— Iteration 1: (k = 1) Shorter paths from 2 ~ 3 and 2
~» 4 are found through vertex 1

D n
1 2 3 4 5 1 2 3 - 5
() 110 ® 6 3 0 1 / / 1 1 /
2| 3 0 9 6 0 2| 2 / 1 1 /
<::::) 3| » ® 0 2 © 3| / / / 3 /
4 | » 1 1 0 © 41 1 4 4 / /
(:::::) (:::::) 5| = 4 L 2 0 51 / 5 / 5 /

30/01/2015

Floyd-Warshall Algorithm

 Example:

— Iteration 2: (k = 2) Shorter paths from 4 ~ 1,5
1, and 5 ~~ 3 are found through vertex 2

D M
1 2 3 4 5 1 2 3 4 5
3 6 10 |w |6 |3 |w 1l |11 |
4 23|09 |6 |w 2l 2 |7 |1 |1 |
6 1\® 3|w |w|[0]| 2| w sl v |0 |1 |31
4la 110w 4l 2|4 |a ||
@ 0 5|7 |4 13|20 s|2 |5 |2 |5 |17

30/01/2015

Floyd-Warshall Algorithm

 Example:

— Iteration 3: (k = 3) No shorter paths are found
through vertex 3

OBNO
ONNO

30/01/2015

O

(&) L w n -

“ ol ewe |l o |lw o

~ I 8 w o | =

I — 8 o 8 N

13

n o n =2} w £

=4 8 8 8 8 S

(&) E w n —

N B -~ - —- w

Floyd-Warshall Algorithm

 Example:
— Iteration 4: (k = 4) Shorter paths from 1~ 2,1
3,2 23,3»1,322,5~]1,5~2, 5~3are
found through vertex 4

D n
1 2 3 4 5 1 2 3 4 5
3 () 1] 0 4 4 3 % 1 / 4 4 1 !
2| 3 0 7 6 0 2| 2 / 4 1 /
3
1 3| 6 3 0 2 o 3| 2 4 / 3 /
2 2 4| 4 1 1 0 o 4| 2 4 4 / /
() 1 5| 6 3 3 2 0 5| 2 4 4 5 /

30/01/2015

Floyd-Warshall Algorithm

 Example:

— Iteration 5: (k = 5) No shorter paths are found
through vertex 5

D Mn
1 2 3 4 5 1 2 3 4 5
@ @ 1 0 4 4 3 o 1 / 4 4 1 !
21 3 0 7 6 0 2| 2 / 4 1 !
@ 3| 6 3 0 2 L 3| 2 4 ! 3 /
4| 4 1 1 0 0 4 2 4 4 ! /
@ @ 5| 6 3 3 2 0 51 2 4 4 5 !

30/01/2015

Floyd-Warshall Algorithm

 Example:

— The final shortest paths for all pairs is given by

n

30/01/2015

Transitive Closure

* Floyd-Warshall can be used to determine whether or
not a graph has transitive closure, i.e., whether or
not there are paths between all vertices.

— Assign all edges in the graph to have weight =1
— Run Floyd-Warshall
— Checkifall d;<n

* This procedure can implement a slightly more
efficient algorithm through the use of logical
operators rather than min() and +.

Johnson's Algorithm

* Floyd-Warshall is efficient for dense graphs, if the
graph is sparse then an alternative all pairs shortest
path strategy known as Johnson's algorithm can be

used.

* This algorithm uses Bellman-Ford to detect any
negative weight cycles and then reweighting the
edges to allow Dijkstra's algorithm to find the
shortest paths. Has running time O(V? Ig V + VE).

 The problem is to find all pairs shortest paths in a
given weighted directed Graph and weights may be

negative.

Johnson's Algorithm

* If we apply Dijkstra’s Single Source shortest path
algorithm O(Vlog V) for every vertex, considering
every vertex as source, we can find all pair shortest
paths in O(V*VLogV) time.

* So, Dijkstra’s SSSP seems to be a better option than
Floyd Warshell O(V3), but the problem with Dijkstra’s

algorithm is, it doesn’t work for negative weight
edge.

* The idea of Johnson’s algorithm is to re-weight all
edges and make them all positive, then apply
Dijkstra’s algorithm for every vertex.

30/01/2015

http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/
http://www.geeksforgeeks.org/dynamic-programming-set-16-floyd-warshall-algorithm/

Johnson's Algorithm

How to transform a given graph to a graph with all non-
negative weight edges?
Adding weight to all edges. Unfortunately, this doesn’t work.

In a weighted graph, assume that the shortest path from a
source ‘s’ to a destination ‘t’ is correctly calculated using a
shortest path algorithm. Is the following statement true?

— If we increase weight of every edge by 1, the shortest path
always remains same.

(A) Yes
(B) No
— Answer: (B) (Explanation is on next slide)

Johnson's Algorithm

Explanation: See the following counterexample.

* There are 4 edges s—=2a, a=2b, b>t and s>t of wights 1,1, 1

and 4 respectively. The shortest path from s to tis s-a, a-b, b-t.
If we increase weight of every edge by 1, the shortest path
changes to s-t.

So, If there are multiple paths from a vertex u to v, then all
paths must be increased by same amount, so that the
shortest path remains the shortest in the transformed graph.

30/01/2015

Johnson's Algorithm

* The idea of Johnson’s algorithm is to assign a weight

to every vertex. Let the weight assighed to vertex u
be hlul].

* We reweight edges using vertex weights. For
example, for an edge (u, v) of weight w(u, v), the new
weight becomes w(u, v) + h[u] — h[v].

* The great thing about this reweighting is, all set of
paths between any two vertices are increased by

same amount and all negative weights become non-
negative.

Johnson's Algorithm

e How do we calculate h[] values?

— Bellman-Ford algorithm is used for this purpose.
Following is the complete algorithm. A new vertex
is added to the graph and connected to all existing
vertices. The shortest distance values from new

vertex to all existing vertices are h[] values.

http://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/

Johnson's Algorithm

* Theory of Algorithm

1) Let the given graph be G. Add a new vertex s to the graph,
add edges from new vertex to all vertices of G. Let the
modified graph be G'.

2) Run Bellman-Ford algorithm on G’ with s as source. Let the
distances calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If
we find a negative weight cycle, then return. Note that the

negative weight cycle cannot be created by new vertex s as
there is no edge to s. All edges are from s.

3) Reweight the edges of original graph. For each edge (u, v),
assign the new weight as “original weight + h[u] — h[v]".

4) Remove the added vertex s and run Dijkstra’s algorithm for
every vertex.

http://www.geeksforgeeks.org/dynamic-programming-set-23-bellman-ford-algorithm/
http://www.geeksforgeeks.org/greedy-algorithms-set-6-dijkstras-shortest-path-algorithm/

Johnson's Algorithm

JOHNSON(G, w)

1 compute G', where G'.V = G.V U {s},
G'.E=G.EU{(s,v):veG.V}, and
w(s,v) =0forallv e G.V

2 if BELLMAN-FORD(G', w, s) == FALSE

3 print “the input graph contains a negative-weight cycle”
4 else for each vertex v € G'.V
5 set 1(v) to the value of §(s, v)

computed by the Bellman-Ford algorithm

6 for each edge (u,v) € G'.E
7 wu,v) = wu,v) + h(u) —h()
8 let D = (d,,) be anew n X n matrix
9 for each vertex u € G.V
10 run DIUKSTRA(G, W, u) to compute g(u, v) forallv e G.V
11 for each vertex v € G.V
12 dyy = 8(u,v) + h(v) — h(u)
13 return D

30/01/2015

Johnson's Algorithm

* How does the transformation ensure nonnegative
weight edges?

* The following property is always true about h{]
values as they are shortest distances.

— h[v] <= h[u] + w(u, v) The property simply means,
shortest distance from s to v must be smaller than
or equal to shortest distance from s to u plus
weight of edge (u, v).

— The new weights are w(u, v) + h[u] - h[v]. The
value of the new weights must be nonnegative
because of the inequality "h[v] <= h[u] + w(u, v)".

Johnson's Algorithm

 Example:
— Let us consider the following graph.

— We add a source s and add edges from s to all
vertices of the original graph. In the following
diagram s is 4.

Johnson's Algorithm

 We calculate the shortest distances from 4 to all other
vertices (0,1,2,3) using Bellman-Ford algorithm as h[] =
{0, -5, -1, 0}.. Then Remove the source vertex 4 and
reweight the edges using formula. w(u, v) = w(u, v) + h[u]
- h[v].

3+0-0 +O4- 4+(-5)-(-1)

e Since all weights are positive now, we can run Dijkstra's
shortest path algorithm for every vertex as source.

Johnson's Algorithm

* Time Complexity: The main steps in algorithm are
Bellman Ford Algorithm called once and Dijkstra
called V times.

* Time complexity of Bellman Ford is O(VE) and time
complexity of Dijkstra is O(VLogV). So overall time
complexity is O(V?log V + VE).

* The time complexity of Johnson's algorithm becomes
same as Floyd Warshell when the graphs is complete
(For a complete graph E = O(V2). But for sparse
graphs, the algorithm performs much better than
Floyd Warshell.

http://www.geeksforgeeks.org/dynamic-programming-set-16-floyd-warshall-algorithm/
http://www.geeksforgeeks.org/dynamic-programming-set-16-floyd-warshall-algorithm/

Example Run (Read it Yourself)

e Stepl: Take any source vertex's' outside the graph
and make distance from's' to every vertex 'O’

——

e Step2: Apply Bellman-Ford Algorithm and calculate
minimum weight on each vertex.

Example Run (Read it Yourself)

* Step3:

—w(a,b)=w(a,b)+h(a)-h(b)=-3+(-1)-(-4)=0
—w(b,a)=wi(b,a)+h(b)-h(a)=5+(-4)-(-1)=2
—wi(b,c)=w(b,c)+h(b)-h(c)=3+(-4)-(-1) =0
—w(c,a)=wi(c,a)+h(c)-h(a)=1+(-1)-(-1)=1
—w(d,c)=w(d,c)+h(d)-h(c)=4+0-(-1)=5
—w(d,a)=w(d,a)+h(d)-h(a)=-1+0-(-1)=0
—w(a,d)=w(a,d)+h(a)-h(d)=2+(-1)-0=1

Example Run (Read it Yourself)

* Step 4: Now all edge weights are positive and now
we can apply Dijkstra's Algorithm on each vertex and
make a matrix corresponds to each vertex in a graph

e Case 1:'a' as a source vertex

a, a
a b

a c

= o o o

a, d

Example Run (Read it Yourself)

e Case 2:'b' as a source vertex

b, a 2
b, b 0
b, c 0
b, d 2
e Case 3:'c' as a source vertex
c a 1
c. b 1
C.C 0
c.d 2

30/01/2015

Example Run (Read it Yourself)

e Cased:'d' as source vertex

d a 0

d b 0

d c 0

dd 0
a b c d
a 0 0 0 1
b 1 0 0 2
c 1 1 0 2
d 0 0 0 0

30/01/2015

Example Run (Read it Yourself)

So0VoctOo« T
c oy ey ey
ARSI

N e

)((((((((—r S S

)))))\ ,)))))))\ ~

”””””””

u((e —

30/01/2015

Homework #6

25.2-2
Show how to compute the transitive closure using the technique of Section 25.1.

25.24
As it appears above, the Floyd-Warshall algorithm requires © (n>) space, since we

compute di(jk) fori, j,k = 1,2,...,n. Show that the following procedure, which
simply drops all the superscripts, is correct, and thus only ®(n?) space is required.

FLOYD-WARSHALL' (W)

n = W.rows
D =W
fork = 1ton
fori =1ton
for j = 1ton
d;j = min (d;;,dx + di;)

NN B W

return D

30/01/2015

Homework #6

25.2-6
How can we use the output of the Floyd-Warshall algorithm to detect the presence
of a negative-weight cycle?

25.2-8
Give an O(VE)-time algorithm for computing the transitive closure of a directed
graph G = (V, E).

25.34

Professor Greenstreet claims that there is a simpler way to reweight edges than
the method used in Johnson’s algorithm. Letting w* = ming, ,eg {w(u, v)}, just
define w(u,v) = w(u,v) — w* for all edges (u,v) € E. What is wrong with the
professor’s method of reweighting?

25.3-6

Professor Michener claims that there is no need to create a new source vertex in
line 1 of JOHNSON. He claims that instead we can just use G’ = G and let s be any
vertex. Give an example of a weighted, directed graph G for which incorporating
the professor’s idea into JOHNSON causes incorrect answers. Then show that if G
is strongly connected (every vertex is reachable from every other vertex), the results
returned by JOHNSON with the professor’s modification are correct.

30/01/2015

