Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science \& IT,
University of Sargodha, Sargodha, 40100, Pakistan
qaiser.abbas@uos.edu.pk

Floyd-Warshall Algorithm (Background)

- For finding shortest paths between all pairs of vertices, run Bellman-Ford or Dijkstra's algorithm for each vertex in the graph. Thus, the run times for these strategies would be (for dense graphs where $|E| \approx|V|^{2}$):
- Bellman-Ford:

$$
-|V| O(V E) \approx O\left(V^{4}\right)
$$

- Dijkstra

$$
\begin{aligned}
& -|V| O\left(V^{2}+E\right) \approx O\left(V^{3}\right) \\
& -|V| O(V \lg V+E) \approx O\left(V^{2} \lg V+V E\right)
\end{aligned}
$$

- For dense graphs an often more efficient algorithm (with very low hidden constants) for finding all pairs shortest paths is the Floyd-Warshall algorithm.

Floyd-Warshall Algorithm

- The working of Floyd-Warshall algorithm is based on the property of intermediate vertices of a shortest path. An intermediate vertex for a path $p=\left\langle v_{1}, v_{2}, \ldots\right.$, $v_{j}>$ is any vertex other than v_{1} or v_{j}.
- If the vertices of a graph G are indexed by $\{1,2, \ldots$, $n\}$, then consider a subset of vertices $\{1,2, \ldots, k\}$. Assume p is a minimum weight path from vertex i to vertex j whose intermediate vertices are drawn from the subset $\{1,2, \ldots, k\}$.

Floyd-Warshall Algorithm

- If we consider vertex k on the path, then either:
$-k$ is not an intermediate vertex of p (i.e., is not used in the minimum weight path)
\Rightarrow all intermediate vertices are in $\{1,2, \ldots, k-1\}$
$-k$ is an intermediate vertex of p (i.e., is used in the minimum weight path)
\Rightarrow we can divide p at k giving two subpaths p_{1} and p_{2} giving $v_{\mathrm{i}} \leadsto k \sim v_{\mathrm{j}}$

Floyd-Warshall Algorithm

all intermediate vertices in $\{1,2, \ldots, k-1\}$ all intermediate vertices in $\{1,2, \ldots, k-1\}$

Figure 25.3 Path p is a shortest path from vertex i to vertex j, and k is the highest-numbered intermediate vertex of p. Path p_{1}, the portion of path p from vertex i to vertex k, has all intermediate vertices in the set $\{1,2, \ldots, k-1\}$. The same holds for path p_{2} from vertex k to vertex j.

Floyd-Warshall Algorithm

- For $\mathrm{D}^{0}{ }_{\mathrm{ij}}$ matrix entries, if $\mathrm{i}=\mathrm{j}$, then $\mathrm{D}_{\mathrm{ij}}{ }_{\mathrm{ij}}=0$ and $\mathrm{if} \mathrm{i} \neq \mathrm{j}$, then $D_{i j}^{0}=\infty$ if there is no any edge.
- If a quantity $d^{(k)}{ }_{i j}$ as the minimum weight of the path from vertex i to vertex j with intermediate vertices drawn from the set $\{1,2, \ldots, k\}$, we have the following recursive solution

$$
d_{i j}^{(k)}= \begin{cases}w_{i j} & \text { if } k=0, \\ \min \left(d_{i j}^{(k-1)}, d_{i k}^{(k-1)}+d_{k j}^{(k-1)}\right) & \text { if } k \geq 1 .\end{cases}
$$

- Optimal values (when $k=n$) in a matrix as

$$
D^{(n)}=\left(d_{i j}^{(n)}\right)=\delta(i, j)
$$

Floyd-Warshall Algorithm

- Different methods for constructing shortest paths in the Floyd- Warshall algorithm.
- One way, is to compute the matrix D of shortest-path weights and then construct the predecessor matrix Π from the D matrix.
- Alternatively, we can compute the predecessor matrix Π while the algorithm computes the matrices $\mathrm{D}^{(\mathrm{k})}$. Specifically, we compute a sequence of matrices $\Pi^{(0)}$, $\Pi^{(1)}, \ldots, \Pi^{(n)}$, where $\Pi=\Pi^{(n)}$ and we define $\pi_{i j}{ }^{(k)}$ as the predecessor of vertex j on a shortest path from vertex i with all intermediate vertices in the set from $\{1,2, \ldots \mathrm{k}\}$

Floyd-Warshall Algorithm

- We can give a recursive formulation of $\pi_{i j}{ }^{(k)}$ When $\mathrm{k}=0$, a shortest path from i to j has no intermediate vertices at all. Thus,

$$
\pi_{i j}^{(0)}= \begin{cases}\text { NIL } & \text { if } i=j \text { or } w_{i j}=\infty \\ i & \text { if } i \neq j \text { and } w_{i j}<\infty\end{cases}
$$

- For $\mathrm{k} \geq 1$, if we take the path $\mathrm{i} \rightarrow \mathrm{k} \rightarrow \mathrm{j}$, where $\mathrm{k} \neq \mathrm{j}$, then the predecessor of j we choose is the same as the predecessor of j we chose on a shortest path from k with all intermediate vertices in the set $\{1,2, \ldots \mathrm{k}\}$. Otherwise, we choose the same predecessor of j that we chose on a shortest path from i with all intermediate vertices in the set $\{1,2, \ldots k-1\}$. Formally, for $\mathrm{k} \geq 1$

Floyd-Warshall Algorithm

FLOYD-WARSHALL (W)

1. $\mathrm{n}=\mathrm{W}$. rows
2. $D^{(0)}=W$
3. $\Pi^{(0)}=\pi^{(0)}{ }_{i j}=$ NIL if i=j or $w_{i j}=\infty$

$$
=\mathrm{i} \quad \text { if } i \neq j \text { and } w_{i j}<\infty
$$

4. for $k=1$ to n
5. let $\mathrm{D}^{(\mathrm{k})}=\left(\mathrm{d}^{(\mathrm{k})}{ }_{i j}\right)$ be a new nxn matrix
6. for $\mathrm{i}=1$ to n
7. for $j=1$ to n
8.

$$
\mathrm{d}^{\mathrm{k}}{ }_{i j}=\min \left(\mathrm{d}^{(\mathrm{k}-1)}{ }_{i j}, \mathrm{~d}^{(\mathrm{k}-1)}{ }_{i k}+\mathrm{d}^{(\mathrm{k}-1)}{ }_{k j}\right)
$$

9. if $\mathrm{d}^{(\mathrm{k}-1)}{ }_{i j} \leq \mathrm{d}^{(\mathrm{k}-1)}{ }_{i k}+\mathrm{d}^{(\mathrm{k}-1)}{ }_{\mathrm{kj}}$
10.

$$
\pi^{(\mathrm{k})}{ }_{\mathrm{ij}}=\pi^{(\mathrm{k}-1)}{ }_{i j}
$$

11. else
12.

$$
\pi^{(\mathrm{k})}{ }_{\mathrm{ij}}=\pi^{(\mathrm{k}-1)}{ }_{\mathrm{kj}}
$$

13. return $D^{(n)}$

Floyd-Warshall Algorithm

- Basically, the algorithm works by repeatedly exploring paths between every pair using each vertex as an intermediate vertex.
- Since Floyd-Warshall is simply three (tight) nested loops, the run time is clearly $\mathrm{O}\left(V^{3}\right)$.

Floyd-Warshall Algorithm

- Example:

Floyd-Warshall Algorithm

- Example:
- Initialization: $(k=0)$

			D		
	1	2	3	4	5
1	0	∞	6	3	∞
2	3	0	∞	∞	∞
3	∞	∞	0	2	∞
4	∞	1	1	0	∞
5	∞	4	∞	2	0

			\square		
	1	2	3	4	5
1	7	/	1	1	1
2	2	/	/	7	1
3	1	1	/	3	7
4	1	4	4	1	1
5	1	5	/	5	7

Floyd-Warshall Algorithm

- Example:
- Iteration 1: $(k=1)$ Shorter paths from $2 \sim 3$ and 2 ~ 4 are found through vertex 1

	D				
	1	2	3	4	5
1	0	∞	6	3	∞
2	3	0	9	6	∞
3	∞	∞	0	2	∞
4	∞	1	1	0	∞
5	∞	4	∞	2	0

	1	Π			
		2	3	4	5
1	1	/	1	1	1
2	2	/	1	1	1
3	1	/	/	3	1
4	/	4	4	1	1
5	1	5	1	5	1

Floyd-Warshall Algorithm

- Example:
- Iteration 2: $(k=2)$ Shorter paths from $4 \sim 1,5 \sim$ 1 , and $5 \sim 3$ are found through vertex 2

	Π				
	1	2	3	4	5
1	1	1	1	1	/
2	2	1	1	1	/
3	1	1	7	3	/
4	2	4	4	/	/
5	2	5	2	5	/

Floyd-Warshall Algorithm

- Example:
- Iteration 3: $(k=3)$ No shorter paths are found through vertex 3

	D				
	1	2	3	4	5
1	0	∞	6	3	∞
2	3	0	9	6	∞
3	∞	∞	0	2	∞
4	4	1	1	0	∞
5	7	4	13	2	0

			\square		
	1	2	3	4	5
1	7	/	1	1	1
2	2	/	1	1	1
3	/	/	/	3	1
4	2	4	4	1	1
5	2	5	2	5	/

Floyd-Warshall Algorithm

- Example:
- Iteration 4: $(k=4)$ Shorter paths from $1 \sim 2,1 \sim$ $3,2 \sim 3,3 \sim 1,3 \sim 2,5 \sim 1,5 \sim 2,5 \sim 3$ are found through vertex 4

	D				
	1	2	3	4	5
1	0	4	4	3	∞
2	3	0	7	6	∞
3	6	3	0	2	∞
4	4	1	1	0	∞
5	6	3	3	2	0

	1	\square			
		2	3	4	5
1	1	4	4	1	1
2	2	1	4	1	/
3	2	4	1	3	1
4	2	4	4	/	/
5	2	4	4	5	/

Floyd-Warshall Algorithm

- Example:
- Iteration 5: $(k=5)$ No shorter paths are found through vertex 5

			\square		
	1	2	3	4	5
1	7	4	4	1	1
2	2	/	4	1	1
3	2	4	1	3	1
4	2	4	4	1	1
5	2	4	4	5	1

Floyd-Warshall Algorithm

- Example:
- The final shortest paths for all pairs is given by

	D				
	1	2	3	4	5
1	0	4	4	3	∞
2	3	0	7	6	∞
3	6	3	0	2	∞
4	4	1	1	0	∞
5	6	3	3	2	0

			\square		
	1	2	3	4	5
1	1	4	4	1	1
2	2	/	4	1	7
3	2	4	1	3	1
4	2	4	4	/	1
5	2	4	4	5	1

Transitive Closure

- Floyd-Warshall can be used to determine whether or not a graph has transitive closure, i.e., whether or not there are paths between all vertices.
- Assign all edges in the graph to have weight = 1
- Run Floyd-Warshall
- Check if all $d_{i j}<n$
- This procedure can implement a slightly more efficient algorithm through the use of logical operators rather than $\min ()$ and + .

Johnson's Algorithm

- Floyd-Warshall is efficient for dense graphs, if the graph is sparse then an alternative all pairs shortest path strategy known as Johnson's algorithm can be used.
- This algorithm uses Bellman-Ford to detect any negative weight cycles and then reweighting the edges to allow Dijkstra's algorithm to find the shortest paths. Has running time $\mathrm{O}\left(V^{2} \lg V+V E\right)$.
- The problem is to find all pairs shortest paths in a given weighted directed Graph and weights may be negative.

Johnson's Algorithm

- If we apply Dijkstra's Single Source shortest path algorithm O(Vlog V) for every vertex, considering every vertex as source, we can find all pair shortest paths in $\mathrm{O}\left(\mathrm{V}^{*} \mathrm{~V}\right.$ LogV) time.
- So, Dijkstra's SSSP seems to be a better option than Floyd Warshell $\mathrm{O}\left(\mathrm{V}^{3}\right)$, but the problem with Dijkstra's algorithm is, it doesn't work for negative weight edge.
- The idea of Johnson's algorithm is to re-weight all edges and make them all positive, then apply Dijkstra's algorithm for every vertex.

Johnson's Algorithm

- How to transform a given graph to a graph with all nonnegative weight edges?
- Adding weight to all edges. Unfortunately, this doesn't work.
- In a weighted graph, assume that the shortest path from a source 's' to a destination ' t ' is correctly calculated using a shortest path algorithm. Is the following statement true?
- If we increase weight of every edge by 1 , the shortest path always remains same.
(A) Yes
(B) No
- Answer: (B) (Explanation is on next slide)

Johnson's Algorithm

- Explanation: See the following counterexample.
- There are 4 edges $s \rightarrow a, a \rightarrow b, b \rightarrow t$ and $s \rightarrow t$ of wights $1,1,1$ and 4 respectively. The shortest path from s to t is $s-a, a-b, b-t$. If we increase weight of every edge by 1 , the shortest path changes to s-t.

- So, If there are multiple paths from a vertex u to v, then all paths must be increased by same amount, so that the shortest path remains the shortest in the transformed graph.

Johnson's Algorithm

- The idea of Johnson's algorithm is to assign a weight to every vertex. Let the weight assigned to vertex u be h[u].
- We reweight edges using vertex weights. For example, for an edge (u, v) of weight $w(u, v)$, the new weight becomes $w(u, v)+h[u]-h[v]$.
- The great thing about this reweighting is, all set of paths between any two vertices are increased by same amount and all negative weights become nonnegative.

Johnson's Algorithm

- How do we calculate h[] values?
- Bellman-Ford algorithm is used for this purpose. Following is the complete algorithm. A new vertex is added to the graph and connected to all existing vertices. The shortest distance values from new vertex to all existing vertices are h[] values.

Johnson's Algorithm

- Theory of Algorithm

1) Let the given graph be G. Add a new vertex s to the graph, add edges from new vertex to all vertices of G. Let the modified graph be G'.
2) Run Bellman-Ford algorithm on G^{\prime} with s as source. Let the distances calculated by Bellman-Ford be h[0], h[1], .. h[V-1]. If we find a negative weight cycle, then return. Note that the negative weight cycle cannot be created by new vertex s as there is no edge to s. All edges are from s.
3) Reweight the edges of original graph. For each edge (u, v), assign the new weight as "original weight $+h[u]-h[v]$ ".
4) Remove the added vertex s and run Dijkstra's algorithm for every vertex.

Johnson's Algorithm

$\operatorname{Johnson}(G, w)$
1 compute G^{\prime}, where $G^{\prime} . V=G . V \cup\{s\}$,
$G^{\prime} \cdot E=G \cdot E \cup\{(s, v): v \in G . V\}$, and $w(s, v)=0$ for all $\nu \in G . V$
if $\operatorname{BELLMAN-FORD}\left(G^{\prime}, w, s\right)==\operatorname{FALSE}$
print "the input graph contains a negative-weight cycle" else for each vertex $v \in G^{\prime} . V$ set $h(\nu)$ to the value of $\delta(s, v)$ computed by the Bellman-Ford algorithm
for each edge $(u, v) \in G^{\prime} . E$ $\widehat{w}(u, v)=w(u, v)+h(u)-h(v)$
let $D=\left(d_{u v}\right)$ be a new $n \times n$ matrix
for each vertex $u \in G . V$ run $\operatorname{DiJKStra}(G, \widehat{w}, u)$ to compute $\hat{\delta}(u, v)$ for all $v \in G . V$ for each vertex $v \in G . V$

$$
d_{u v}=\widehat{\delta}(u, v)+h(v)-h(u)
$$

return D

Johnson's Algorithm

- How does the transformation ensure nonnegative weight edges?
- The following property is always true about h[] values as they are shortest distances.
$-h[v]<=h[u]+w(u, v)$ The property simply means, shortest distance from s to v must be smaller than or equal to shortest distance from s to u plus weight of edge (u, v).
- The new weights are $w(u, v)+h[u]-h[v]$. The value of the new weights must be nonnegative because of the inequality " $\mathrm{h}[\mathrm{v}]<=\mathrm{h}[\mathrm{u}]+\mathrm{w}(\mathrm{u}, \mathrm{v})$ ".

Johnson's Algorithm

- Example:
- Let us consider the following graph.

- We add a source s and add edges from s to all vertices of the original graph. In the following diagram s is 4.

Johnson's Algorithm

- We calculate the shortest distances from 4 to all other vertices ($0,1,2,3$) using Bellman-Ford algorithm as h[]$=$ $\{0,-5,-1,0\}$.. Then Remove the source vertex 4 and reweight the edges using formula. $w(u, v)=w(u, v)+h[u]$ - $\mathrm{h}[\mathrm{v}$].

- Since all weights are positive now, we can run Dijkstra's shortest path algorithm for every vertex as source.

Johnson's Algorithm

- Time Complexity: The main steps in algorithm are Bellman Ford Algorithm called once and Dijkstra called V times.
- Time complexity of Bellman Ford is O(VE) and time complexity of Dijkstra is $\mathrm{O}(\mathrm{VLogV})$. So overall time complexity is $\mathrm{O}\left(\mathrm{V}^{2} \log \mathrm{~V}+\mathrm{VE}\right)$.
- The time complexity of Johnson's algorithm becomes same as Floyd Warshell when the graphs is complete (For a complete graph $\mathrm{E}=\mathrm{O}\left(\mathrm{V}^{2}\right)$. But for sparse graphs, the algorithm performs much better than Floyd Warshell.

Example Run (Read it Yourself)

- Step1: Take any source vertex's' outside the graph and make distance from's' to every vertex ' 0 '.

- Step2: Apply Bellman-Ford Algorithm and calculate minimum weight on each vertex.

Example Run (Read it Yourself)

- Step3:

$$
\begin{aligned}
& -w(a, b)=w(a, b)+h(a)-h(b)=-3+(-1)-(-4)=0 \\
& -w(b, a)=w(b, a)+h(b)-h(a)=5+(-4)-(-1)=2 \\
& -w(b, c)=w(b, c)+h(b)-h(c)=3+(-4)-(-1)=0 \\
& -w(c, a)=w(c, a)+h(c)-h(a)=1+(-1)-(-1)=1 \\
& -w(d, c)=w(d, c)+h(d)-h(c)=4+0-(-1)=5 \\
& -w(d, a)=w(d, a)+h(d)-h(a)=-1+0-(-1)=0 \\
& -w(a, d)=w(a, d)+h(a)-h(d)=2+(-1)-0=1
\end{aligned}
$$

Example Run (Read it Yourself)

- Step 4: Now all edge weights are positive and now we can apply Dijkstra's Algorithm on each vertex and make a matrix corresponds to each vertex in a graph
- Case 1: 'a' as a source vertex

a, a	0
a,b	0
a,c	0
a,d	1

Example Run (Read it Yourself)

- Case 2: 'b' as a source vertex

- Case 3: 'c' as a source vertex

30/01/2015

Example Run (Read it Yourself)

- Case4:'d' as source vertex

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	0	0	1
\mathbf{b}	1	0	0	2
\mathbf{c}	1	1	0	2
\mathbf{d}	0	0	0	0

Example Run (Read it Yourself)

- Step5:
- $\mathrm{d}_{\mathrm{uv}} \leftarrow \delta(\mathrm{u}, \mathrm{v})+\mathrm{h}(\mathrm{v})-\mathrm{h}(\mathrm{u})$
$d(a, a)=0+(-1)-(-1)=0$
$d(a, b)=0+(-4)-(-1)=-3$
$d(a, c)=0+(-1)-(-1)=0$
$\mathrm{d}(\mathrm{a}, \mathrm{d})=1+(0)-(-1)=2$
$d(b, a)=1+(-1)-(-4)=4$
$d(b, b)=0+(-4)-(-4)=0$
$d(c, a)=1+(-1)-(-1)=1$
$d(c, b)=1+(-4)-(-1)=-2$
d $(c, c)=0$
$d(c, d)=2+(0)-(-1)=3$
$d(d, a)=0+(-1)-(0)=-1$
$d(d, b)=0+(-4)-(0)=-4$
$d(d, c)=0+(-1)-(0)=-1$
$d(d, d)=0$

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
\mathbf{a}	0	-3	0	2
\mathbf{b}	4	0	3	6
\mathbf{c}	1	-2	0	3
\mathbf{d}	-1	-4	-1	0

Homework \#6

25.2-2

Show how to compute the transitive closure using the technique of Section 25.1.

25.2-4

As it appears above, the Floyd-Warshall algorithm requires $\Theta\left(n^{3}\right)$ space, since we compute $d_{i j}^{(k)}$ for $i, j, k=1,2, \ldots, n$. Show that the following procedure, which simply drops all the superscripts, is correct, and thus only $\Theta\left(n^{2}\right)$ space is required.

Floyd-WARSHALL' ${ }^{\prime}(W)$
$1 n=W$.rows
$2 D=W$
3 for $k=1$ to n
$4 \quad$ for $i=1$ to n
$5 \quad$ for $j=1$ to n
$6 \quad d_{i j}=\min \left(d_{i j}, d_{i k}+d_{k j}\right)$
return D

Homework \#6

25.2-6

How can we use the output of the Floyd-Warshall algorithm to detect the presence of a negative-weight cycle?
25.2-8

Give an $O(V E)$-time algorithm for computing the transitive closure of a directed graph $G=(V, E)$.
25.3-4

Professor Greenstreet claims that there is a simpler way to reweight edges than the method used in Johnson's algorithm. Letting $w^{*}=\min _{(u, v) \in E}\{w(u, v)\}$, just define $\widehat{w}(u, v)=w(u, v)-w^{*}$ for all edges $(u, v) \in E$. What is wrong with the professor's method of reweighting?

25.3-6

Professor Michener claims that there is no need to create a new source vertex in line 1 of Johnson. He claims that instead we can just use $G^{\prime}=G$ and let s be any vertex. Give an example of a weighted, directed graph G for which incorporating the professor's idea into JOHNSON causes incorrect answers. Then show that if G is strongly connected (every vertex is reachable from every other vertex), the results returned by JOHNSON with the professor's modification are correct.

