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Shortest Path Problem

• In a shortest-path problem, we are given a weighted, directed 
graph G = (V,E) with weight function w: EàR mapping edges 
to real-valued weights. The weight w(p) of path p = (v0,v1,…vk) 
is the sum of the weights of its constituent edges: 

• We define the shortest-path weight δ(u,v) from u to v by
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Shortest Path Problem

• Variants 
• In this Lecture, we shall focus on the single-source shortest-paths 

problem: given a graph G=(V,E), we want to find a shortest path from a 
given source vertex s ε V to each vertex v ε V . The algorithm for the single-
source problem can solve many other problems, including the following 
variants. 
– Single-destination shortest-paths problem: Find a shortest path to a 

given destination vertex t from each vertex v. By reversing the 
direction of each edge in the graph, we can reduce this problem to a 
single-source problem. 

– Single-pair shortest-path problem: Find a shortest path from u to v for 
given vertices u and v. If we solve the single-source problem with 
source vertex u, we solve this problem also. 

– All-pairs shortest-paths problem: Find a shortest path from u to v for 
every pair of vertices u and v. Although we can solve this problem by 
running a single- source algorithm once from each vertex, we usually 
can solve it faster. (see Chapter 25).
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Shortest Path Problem

• Optimal substructure of a shortest path 
– Shortest-paths algorithms typically rely on the 

property that a shortest path between two vertices 
contains other shortest paths within it. (The Edmonds-
Karp maximum-flow algorithm in Chapter 26) 

– Recall that optimal substructure is one of the key 
indicators that dynamic programming (Chapter 15) 
and the greedy method (Chapter 16) might apply. 

– Dijkstra’s algorithm, which we shall see next, is a 
greedy algorithm, and the Floyd- Warshall algorithm, 
which finds shortest paths between all pairs of 
vertices (will see next), is a dynamic-programming 
algorithm. 
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Shortest Path Problem
• Negative Weight Edges:
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Shortest Path Problem
• Cycles:
– when we are finding shortest paths, they have no 

cycles, i.e., they are simple paths. Since any acyclic 
path in a graph G = (V,E) contains at most |V| 
distinct vertices, it also contains at most |V|- 1 
edges. 
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Shortest Path Problem
• Representing shortest paths 

• Shortest paths are not necessarily unique, and neither 
are shortest-paths trees. For example, Figure 24.2 shows 
a weighted, directed graph and two shortest-paths trees 
with the same root. 
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Shortest Path Problem
• Initialization 
– For each vertex v ε V , we maintain an attribute 

v.d, which is an upper bound on the weight of a 
shortest path from source s to v. 

– We call v.d a shortest-path estimate. We initialize 
the shortest-path estimates and predecessors by 
the following O(V)-time procedure: 
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Shortest Path Problem
• Relaxation 
– The process of relaxing an edge (u,v) consists of 

testing whether we can improve the shortest path 
to v found so far by going through u and, if so, 
updating v.d and v.π. A relaxation step may 
decrease the value of the shortest-path estimate 
v.d and update v’s predecessor attribute v.π.

– The following code performs a relaxation step on 
edge (u,v) in O(1) time: 
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Shortest Path Problem
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• Dijkstra’s algorithm and the shortest-paths algorithm 
for directed acyclic graphs relax each edge exactly 
once. The Bellman-Ford algorithm relaxes each edge 
|V|-1 times. 



The Bellman-Ford algorithm 
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• The Bellman-Ford algorithm solves the single-source 
shortest-paths problem in which edge weights may be 
negative. 

• Given a weighted, directed graph G = (V,E) with source s 
and weight function w: EàR, the Bellman-Ford algorithm 
returns a boolean value indicating whether or not there 
is a negative-weight cycle that is reachable from the 
source. 

• If there is such a cycle, the algorithm indicates that no 
solution exists. If there is no such cycle, the algorithm 
produces the shortest paths and their weights. 
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The Bellman-Ford algorithm 

2/16/21



The Bellman-Ford algorithm 
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Steps s.d/s.π t.d/t. 
π

x.d/x. 
π

y.d/y. π z.d/z. 
π

init 0/Nil ∞/Nil ∞/Nil ∞/Nil ∞/Nil

S,t 6/s

S,y 7/s

T,x 11/t

T,y 7/s

T,z 2/t

X,t 6/s

Y,x 4/y

Y,z 2/t

Z,s 0/nil

Z,x 4/y
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The Bellman-Ford algorithm 
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• How did it become?



Slide Adopted From the Work of An MIT 
Professor, Erik Demaine
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• Distance-vector routing protocol 
– Repeatedly relax edges until 

convergence
– Relaxation is local! 

• On the Internet: 
– Routing Information Protocol 

(RIP) 
– Interior Gateway Routing 

Protocol (IGRP) 

http://erikdemaine.org/
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for	 in	 :

for	 from	 to	 :
for	 in	 :
relax

for	 in	 :
if	 :
report	that	a	negative‐weight	cycle	exists

Bellman‐Ford	Analysis

Slide Adopted From the Work of An MIT 
Professor, Erik Demaine

http://erikdemaine.org/
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Single-source shortest paths in directed 
acyclic graphs

• Section 24.2 (Read it yourself)
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Dijkstra’s algorithm

• Dijkstra’s algorithm solves the single-source shortest-
paths problem on a weighted, directed graph G=(V, 
E) for the case in which all edge weights are 
nonnegative. 
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Dijkstra’s algorithm
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Dijkstra’s algorithm

• Dijkstra’s algorithm maintains a set S of vertices 
whose final shortest-path weights from the source s 
have already been determined. 

• The algorithm repeatedly selects the vertex u ε V-S 
with the minimum shortest-path estimate, adds u to 
S, and relaxes all edges leaving u. 

• In the following implementation, a min-priority 
queue Q of vertices is used, keyed by their d values. 
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Dijkstra’s algorithm
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Dijkstra’s algorithm



Dijkstra’s algorithm

• Dijkstra’s algorithm always chooses the “lightest” or 
“closest” vertex in V-S to add to set S , and hence uses 
the greedy strategy. 

• Dijkstra’s algorithm resembles both breadth-first search 
(Read Section 22.2 by yourself) and Prim’s algorithm for 
computing minimum spanning trees (Read Section 23.2 
by yourself). 

• Time Complexity of the implementation is O(V^2). If the 
input graph is represented using adjacency list, it can be 
reduced to O(E log V) (Section 6.5) with the help of 
binary heap and O(E+VlogV) (Chapter 19) in case of 
Fibonacci heap. 
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http://www.geeksforgeeks.org/archives/27134


Analysis of Dijkstra’s algorithm

ShortestPath(G, v)
1. For all v∈V, D[v]=∞
2. D[s]=0
3. For all v∈V, P[v]=Nil
4. Put all v∈V into a data structure Q, using Q.Insert(v, D[v])
5. while (!Q.Empty()) // Q.Empty() return Boolean value 
6. c = Q.removeMin()
7. for each neighbors c of v in Q do
8. w= weight of (c,v) ∈ E 
9. if D[c] + w < D[v] then 
10. D[v] = D[c] + w
11. P[v] = c
12. Q.DecreaseKey(v,D[v])
13. return D[t] and optionally P
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Analysis of Dijkstra’s algorithm

• Running time using an array as a priority queue Q
– = O(|V|) + O( |V|.time of Q.Insert()) + O( |V| . (time 

of Q.Empty() + time of Q.RemoveMin()) + |E| . ( O(1) + 
time of Q.DecreaseKey())) + O(|V|)

– = O( |V| . (time of Q.Insert() + time of Q.Empty() + 
time of Q.RemoveMin()) + O ( |E| . time of 
Q.Decreasekey())

• In case of an array, Q.Insert(), Q.Empty(), and 
Q.DecreaseKey() take O(1) time, and Q.RemoveMin() 
takes O(V) time, so
– = O( |V|. ( O(1)+O(1)+O(V)) + O( |E|. O(1))
– = O(V2+E) = O(V2)
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Analysis of Dijkstra’s algorithm

• Running time using a heap as a priority queue Q 
– = O( |V| . (time of Q.Insert() + time of Q.Empty() + 

time of Q.RemoveMin()) + O ( |E| . time of 
Q.Decreasekey())

• In case of a heap, Q.Insert, Q.RemoveMin(), and 
Q.DecreaseKey() take O(logV) time, and Q.Empty() takes 
O(1) time, so
– = O( |V|. ( O(logV)+O(1)+O(logV)) + O( |E|. O(logV))
– = O(VlogV+ElogV) = O(V+E)logV
– If the graph is sparse, then |E| = |V|, otherwise, E 

logV wins in comparison of V logV and E logV which 
beats the complexity of O(V2)
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Analysis of Dijkstra’s algorithm

• Running time using a Fibonacci heap as a priority queue Q 
– = O( |V| . (time of Q.Insert() + time of Q.Empty() + time of 

Q.RemoveMin()) + O ( |E| . time of Q.Decreasekey())
• In case of a Fibonacci heap, Q.Insert and Q.Empty() take O(1) 

time, similarly, Q.DecreaseKey() takes O(1) amortized time, 
and Q.RemoveMin() takes O(logV) time, so
– = O( |V|. ( O(1)+O(1)+O(logV)) + O( |E|. O(1))
– = O(VlogV+E)
– If |E| = |V|, then O(VlogV+E) becomes E logE which is 

equal to previous binary heap approach.
– If |E| = |V2|, then O(VlogV+E) becomes O|V2|which equal 

to the first version of array
– Etc.
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Term Paper

• Have a look over the state-of-the-art algorithms and their 
issues.
1. Build a comparative study if you find similar algorithms 

to solve a same problem.
2. After understanding a state-of-the-art algorithmic model 

with its issue, try to propose a solution.
3. Criticize or negate the way, a state-of-the-art algorithm is 

designed. 
• Your term paper should include the following as a sample:
– Title, authors profiles, abstract, keywords, introduction, 

methodology or design, etc; implementation, etc; 
discussion and issues, etc; conclusion and references.

• Deadline: before the final term paper.
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Home Work # 6
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