
Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science & IT,

University of Sargodha, Sargodha, 40100, Pakistan
qaiser.abbas@uos.edu.pk

Shortest Path Problem

• In a shortest-path problem, we are given a weighted, directed
graph G = (V,E) with weight function w: EàR mapping edges
to real-valued weights. The weight w(p) of path p = (v0,v1,…vk)
is the sum of the weights of its constituent edges:

• We define the shortest-path weight δ(u,v) from u to v by

2/16/21

Shortest Path Problem

• Variants
• In this Lecture, we shall focus on the single-source shortest-paths

problem: given a graph G=(V,E), we want to find a shortest path from a
given source vertex s ε V to each vertex v ε V . The algorithm for the single-
source problem can solve many other problems, including the following
variants.
– Single-destination shortest-paths problem: Find a shortest path to a

given destination vertex t from each vertex v. By reversing the
direction of each edge in the graph, we can reduce this problem to a
single-source problem.

– Single-pair shortest-path problem: Find a shortest path from u to v for
given vertices u and v. If we solve the single-source problem with
source vertex u, we solve this problem also.

– All-pairs shortest-paths problem: Find a shortest path from u to v for
every pair of vertices u and v. Although we can solve this problem by
running a single- source algorithm once from each vertex, we usually
can solve it faster. (see Chapter 25).

2/16/21

Shortest Path Problem

• Optimal substructure of a shortest path
– Shortest-paths algorithms typically rely on the

property that a shortest path between two vertices
contains other shortest paths within it. (The Edmonds-
Karp maximum-flow algorithm in Chapter 26)

– Recall that optimal substructure is one of the key
indicators that dynamic programming (Chapter 15)
and the greedy method (Chapter 16) might apply.

– Dijkstra’s algorithm, which we shall see next, is a
greedy algorithm, and the Floyd- Warshall algorithm,
which finds shortest paths between all pairs of
vertices (will see next), is a dynamic-programming
algorithm.

2/16/21

Shortest Path Problem
• Negative Weight Edges:

2/16/21

Shortest Path Problem
• Cycles:
– when we are finding shortest paths, they have no

cycles, i.e., they are simple paths. Since any acyclic
path in a graph G = (V,E) contains at most |V|
distinct vertices, it also contains at most |V|- 1
edges.

2/16/21

Shortest Path Problem
• Representing shortest paths

• Shortest paths are not necessarily unique, and neither
are shortest-paths trees. For example, Figure 24.2 shows
a weighted, directed graph and two shortest-paths trees
with the same root.

2/16/21

Shortest Path Problem
• Initialization
– For each vertex v ε V , we maintain an attribute

v.d, which is an upper bound on the weight of a
shortest path from source s to v.

– We call v.d a shortest-path estimate. We initialize
the shortest-path estimates and predecessors by
the following O(V)-time procedure:

2/16/21

Shortest Path Problem
• Relaxation
– The process of relaxing an edge (u,v) consists of

testing whether we can improve the shortest path
to v found so far by going through u and, if so,
updating v.d and v.π. A relaxation step may
decrease the value of the shortest-path estimate
v.d and update v’s predecessor attribute v.π.

– The following code performs a relaxation step on
edge (u,v) in O(1) time:

2/16/21

Shortest Path Problem

2/16/21

• Dijkstra’s algorithm and the shortest-paths algorithm
for directed acyclic graphs relax each edge exactly
once. The Bellman-Ford algorithm relaxes each edge
|V|-1 times.

The Bellman-Ford algorithm

2/16/21

• The Bellman-Ford algorithm solves the single-source
shortest-paths problem in which edge weights may be
negative.

• Given a weighted, directed graph G = (V,E) with source s
and weight function w: EàR, the Bellman-Ford algorithm
returns a boolean value indicating whether or not there
is a negative-weight cycle that is reachable from the
source.

• If there is such a cycle, the algorithm indicates that no
solution exists. If there is no such cycle, the algorithm
produces the shortest paths and their weights.

2/16/21

The Bellman-Ford algorithm

2/16/21

The Bellman-Ford algorithm

2/16/21

Steps s.d/s.π t.d/t.
π

x.d/x.
π

y.d/y. π z.d/z.
π

init 0/Nil ∞/Nil ∞/Nil ∞/Nil ∞/Nil

S,t 6/s

S,y 7/s

T,x 11/t

T,y 7/s

T,z 2/t

X,t 6/s

Y,x 4/y

Y,z 2/t

Z,s 0/nil

Z,x 4/y

.

.
.
.

.

.
.
.

.

.
.
.

The Bellman-Ford algorithm

2/16/21

• How did it become?

Slide Adopted From the Work of An MIT
Professor, Erik Demaine

2/16/21

• Distance-vector routing protocol
– Repeatedly relax edges until

convergence
– Relaxation is local!

• On the Internet:
– Routing Information Protocol

(RIP)
– Interior Gateway Routing

Protocol (IGRP)

http://erikdemaine.org/

2/16/21

for	 in	 :

for	 from	 to	 :
for	 in	 :
relax

for	 in	 :
if	 :
report	that	a	negative‐weight	cycle	exists

Bellman‐Ford	Analysis

Slide Adopted From the Work of An MIT
Professor, Erik Demaine

http://erikdemaine.org/

2/16/21

Single-source shortest paths in directed
acyclic graphs

• Section 24.2 (Read it yourself)

2/16/21

Dijkstra’s algorithm

• Dijkstra’s algorithm solves the single-source shortest-
paths problem on a weighted, directed graph G=(V,
E) for the case in which all edge weights are
nonnegative.

2/16/21

Dijkstra’s algorithm

2/16/21

Dijkstra’s algorithm

• Dijkstra’s algorithm maintains a set S of vertices
whose final shortest-path weights from the source s
have already been determined.

• The algorithm repeatedly selects the vertex u ε V-S
with the minimum shortest-path estimate, adds u to
S, and relaxes all edges leaving u.

• In the following implementation, a min-priority
queue Q of vertices is used, keyed by their d values.

2/16/21

Dijkstra’s algorithm

2/16/21

Dijkstra’s algorithm

Dijkstra’s algorithm

• Dijkstra’s algorithm always chooses the “lightest” or
“closest” vertex in V-S to add to set S , and hence uses
the greedy strategy.

• Dijkstra’s algorithm resembles both breadth-first search
(Read Section 22.2 by yourself) and Prim’s algorithm for
computing minimum spanning trees (Read Section 23.2
by yourself).

• Time Complexity of the implementation is O(V^2). If the
input graph is represented using adjacency list, it can be
reduced to O(E log V) (Section 6.5) with the help of
binary heap and O(E+VlogV) (Chapter 19) in case of
Fibonacci heap.

2/16/21

http://www.geeksforgeeks.org/archives/27134

Analysis of Dijkstra’s algorithm

ShortestPath(G, v)
1. For all v∈V, D[v]=∞
2. D[s]=0
3. For all v∈V, P[v]=Nil
4. Put all v∈V into a data structure Q, using Q.Insert(v, D[v])
5. while (!Q.Empty()) // Q.Empty() return Boolean value
6. c = Q.removeMin()
7. for each neighbors c of v in Q do
8. w= weight of (c,v) ∈ E
9. if D[c] + w < D[v] then
10. D[v] = D[c] + w
11. P[v] = c
12. Q.DecreaseKey(v,D[v])
13. return D[t] and optionally P

2/16/21

Analysis of Dijkstra’s algorithm

• Running time using an array as a priority queue Q
– = O(|V|) + O(|V|.time of Q.Insert()) + O(|V| . (time

of Q.Empty() + time of Q.RemoveMin()) + |E| . (O(1) +
time of Q.DecreaseKey())) + O(|V|)

– = O(|V| . (time of Q.Insert() + time of Q.Empty() +
time of Q.RemoveMin()) + O (|E| . time of
Q.Decreasekey())

• In case of an array, Q.Insert(), Q.Empty(), and
Q.DecreaseKey() take O(1) time, and Q.RemoveMin()
takes O(V) time, so
– = O(|V|. (O(1)+O(1)+O(V)) + O(|E|. O(1))
– = O(V2+E) = O(V2)

2/16/21

Analysis of Dijkstra’s algorithm

• Running time using a heap as a priority queue Q
– = O(|V| . (time of Q.Insert() + time of Q.Empty() +

time of Q.RemoveMin()) + O (|E| . time of
Q.Decreasekey())

• In case of a heap, Q.Insert, Q.RemoveMin(), and
Q.DecreaseKey() take O(logV) time, and Q.Empty() takes
O(1) time, so
– = O(|V|. (O(logV)+O(1)+O(logV)) + O(|E|. O(logV))
– = O(VlogV+ElogV) = O(V+E)logV
– If the graph is sparse, then |E| = |V|, otherwise, E

logV wins in comparison of V logV and E logV which
beats the complexity of O(V2)

2/16/21

Analysis of Dijkstra’s algorithm

• Running time using a Fibonacci heap as a priority queue Q
– = O(|V| . (time of Q.Insert() + time of Q.Empty() + time of

Q.RemoveMin()) + O (|E| . time of Q.Decreasekey())
• In case of a Fibonacci heap, Q.Insert and Q.Empty() take O(1)

time, similarly, Q.DecreaseKey() takes O(1) amortized time,
and Q.RemoveMin() takes O(logV) time, so
– = O(|V|. (O(1)+O(1)+O(logV)) + O(|E|. O(1))
– = O(VlogV+E)
– If |E| = |V|, then O(VlogV+E) becomes E logE which is

equal to previous binary heap approach.
– If |E| = |V2|, then O(VlogV+E) becomes O|V2|which equal

to the first version of array
– Etc.

2/16/21

Term Paper

• Have a look over the state-of-the-art algorithms and their
issues.
1. Build a comparative study if you find similar algorithms

to solve a same problem.
2. After understanding a state-of-the-art algorithmic model

with its issue, try to propose a solution.
3. Criticize or negate the way, a state-of-the-art algorithm is

designed.
• Your term paper should include the following as a sample:
– Title, authors profiles, abstract, keywords, introduction,

methodology or design, etc; implementation, etc;
discussion and issues, etc; conclusion and references.

• Deadline: before the final term paper.

2/16/21

Home Work # 6

2/16/21

