Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science \& IT,
University of Sargodha, Sargodha, 40100, Pakistan
qaiser.abbas@uos.edu.pk

Shortest Path Problem

- In a shortest-path problem, we are given a weighted, directed graph $G=(V, E)$ with weight function $w: ~ E \rightarrow R$ mapping edges to real-valued weights. The weight $w(p)$ of path $p=\left(v_{0}, v_{1}, \ldots v_{k}\right)$ is the sum of the weights of its constituent edges:

$$
w(p)=\sum_{i=1}^{k} w\left(v_{i-1}, v_{i}\right)
$$

- We define the shortest-path weight $\delta(u, v)$ from \mathbf{u} to \mathbf{v} by

$$
\delta(u, v)= \begin{cases}\min \{w(p): u \stackrel{p}{\sim} v\} & \text { if there is a path from } u \text { to } v \\ \infty & \text { otherwise }\end{cases}
$$

Shortest Path Problem

- Variants
- In this Lecture, we shall focus on the single-source shortest-paths problem: given a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$, we want to find a shortest path from a given source vertex $s \varepsilon \vee$ to each vertex $\vee \varepsilon \mathrm{V}$. The algorithm for the singlesource problem can solve many other problems, including the following variants.
- Single-destination shortest-paths problem: Find a shortest path to a given destination vertex t from each vertex v. By reversing the direction of each edge in the graph, we can reduce this problem to a single-source problem.
- Single-pair shortest-path problem: Find a shortest path from u to v for given vertices u and v. If we solve the single-source problem with source vertex u, we solve this problem also.
- All-pairs shortest-paths problem: Find a shortest path from u to v for every pair of vertices u and v. Although we can solve this problem by running a single- source algorithm once from each vertex, we usually can solve it faster. (see Chapter 25).

Shortest Path Problem

- Optimal substructure of a shortest path
- Shortest-paths algorithms typically rely on the property that a shortest path between two vertices contains other shortest paths within it. (The EdmondsKarp maximum-flow algorithm in Chapter 26)
- Recall that optimal substructure is one of the key indicators that dynamic programming (Chapter 15) and the greedy method (Chapter 16) might apply.
- Dijkstra's algorithm, which we shall see next, is a greedy algorithm, and the Floyd- Warshall algorithm, which finds shortest paths between all pairs of vertices (will see next), is a dynamic-programming algorithm.

Shortest Path Problem

- Negative Weight Edges:

Figure 24.1 Negative edge weights in a directed graph. The shortest-path weight from source s appears within each vertex. Because vertices e and f form a negative-weight cycle reachable from s, they have shortest-path weights of $-\infty$. Because vertex g is reachable from a vertex whose shortestpath weight is $-\infty$, it, too, has a shortest-path weight of $-\infty$. Vertices such as h, i, and j are not reachable from s, and so their shortest-path weights are ∞, even though they lie on a negative-weight cycle.

Shortest Path Problem

- Cycles:
- when we are finding shortest paths, they have no cycles, i.e., they are simple paths. Since any acyclic path in a graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ contains at most $|\mathrm{V}|$ distinct vertices, it also contains at most $|\mathrm{V}|-1$ edges.

Shortest Path Problem

- Representing shortest paths

(a)

(b)

(c)

Figure 24.2 (a) A weighted, directed graph with shortest-path weights from source s. (b) The shaded edges form a shortest-paths tree rooted at the source s. (c) Another shortest-paths tree with the same root.

- Shortest paths are not necessarily unique, and neither are shortest-paths trees. For example, Figure 24.2 shows a weighted, directed graph and two shortest-paths trees with the same root.

Shortest Path Problem

- Initialization
- For each vertex $\vee \varepsilon \vee$, we maintain an attribute v.d, which is an upper bound on the weight of a shortest path from source s to v.
- We call v.d a shortest-path estimate. We initialize the shortest-path estimates and predecessors by the following $\mathrm{O}(\mathrm{V})$-time procedure:

$$
\begin{aligned}
& \text { Initialize-Single-Source }(G, s) \\
& 1 \\
& \begin{array}{lc}
\text { for each vertex } v \in G . V \\
2 & \nu . d=\infty \\
3 & \nu . \pi=\mathrm{NIL} \\
4 & s . d=0
\end{array}
\end{aligned}
$$

Shortest Path Problem

- Relaxation
- The process of relaxing an edge (u, v) consists of testing whether we can improve the shortest path to v found so far by going through u and, if so, updating v.d and v.r. A relaxation step may decrease the value of the shortest-path estimate v.d and update v's predecessor attribute v.r.
- The following code performs a relaxation step on edge (u, v) in $O(1)$ time:

$$
\begin{aligned}
& \operatorname{RELAX}(u, v, w) \\
& 1 \text { if } v . d>u . d+w(u, v) \\
& 2 \quad v . d=u . d+w(u, v) \\
& 3 \quad v . \pi=u
\end{aligned}
$$

Shortest Path Problem

(a)

(b)

- Dijkstra's algorithm and the shortest-paths algorithm for directed acyclic graphs relax each edge exactly once. The Bellman-Ford algorithm relaxes each edge |V|-1 times.

The Bellman-Ford algorithm

- The Bellman-Ford algorithm solves the single-source shortest-paths problem in which edge weights may be negative.
- Given a weighted, directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ with source s and weight function $w: E \rightarrow R$, the Bellman-Ford algorithm returns a boolean value indicating whether or not there is a negative-weight cycle that is reachable from the source.
- If there is such a cycle, the algorithm indicates that no solution exists. If there is no such cycle, the algorithm produces the shortest paths and their weights.

Bellman \& Ford

Richard E. Bellman (1920-1984)
IEEE Medal of Honor, 1979

Lester R. Ford, Jr.
(1927-)
president of MAA, 1947-48

The Bellman-Ford algorithm

```
BELLMAN-FORD \((G, w, s)\)
1 Initialize-Single-Source \((G, s)\)
2 for \(i=1\) to \(|G . V|-1\)
3 for each edge \((u, v) \in G . E\)
        \(\operatorname{Relax}(u, v, w)\)
5 for each edge \((u, v) \in G . E\)
6 if \(v . d>u . d+w(u, v)\)
    return FALSE
8 return TRUE
```


The Bellman-Ford algorithm

Steps	s.d/s. π	t.d/t. π	$\mathrm{x} . \mathrm{d} / \mathrm{x}$. π	$\mathrm{y} . \mathrm{d} / \mathrm{y} . \pi$	z.d/z. π
init	$0 / \mathrm{Nil}$	∞ / Nil	∞ / Nil	∞ / Nil	∞ / Nil
S, t		$6 / \mathrm{s}$			
S, y				$7 / \mathrm{s}$	
T, x			$11 / \mathrm{t}$		
T, y				$7 / \mathrm{s}$	
T, z					$2 / \mathrm{t}$
X, t		$6 / \mathrm{s}$			
Y, x			$4 / \mathrm{y}$		
Y, z					$2 / \mathrm{t}$
Z, s	$0 / \mathrm{nil}$				
Z, x			$4 / \mathrm{y}$		
.
.

The Bellman-Ford algorithm

- How did it become?

Slide Adopted From the Work of An MIT Professor, Erik Demaine

- Distance-vector routing protocol
- Repeatedly relax edges until convergence
- Relaxation is local!
- On the Internet:
- Routing Information Protocol (RIP)
- Interior Gateway Routing Protocol (IGRP)

Slide Adopted From the Work of An MIT Professor, Erik Demaine

Bellman-Ford Analysis

```
forvinv:}\begin{array}{c}{v.d=\infty}\end{array}}\quad\mathrm{ Total: O(VE)
s.d = 0
for i from 1 to }|V|-1\mathrm{ :
    for (u,v) in E
        relax(u,v) }O(1)}
for (u,v) in E:
    if v.d>u.d+w(u,v):
        report that a negative-weight cycle exists
```


Single-source shortest paths in directed acyclic graphs

- Section 24.2 (Read it yourself)

Dijkstra's algorithm

- Dijkstra's algorithm solves the single-source shortestpaths problem on a weighted, directed graph $\mathrm{G}=(\mathrm{V}$, E) for the case in which all edge weights are nonnegative.

Dijkstra's algorithm

Dijkstra's algorithm

- Dijkstra's algorithm maintains a set S of vertices whose final shortest-path weights from the source s have already been determined.
- The algorithm repeatedly selects the vertex $u \varepsilon$ V-S with the minimum shortest-path estimate, adds u to S, and relaxes all edges leaving u.
- In the following implementation, a min-priority queue Q of vertices is used, keyed by their d values.

Dijkstra's algorithm

Dijkstra (G, w, s)
1 Initialize-Single-Source (G, s)
$2 S=\emptyset$
$3 \quad Q=G . V$
4 while $Q \neq \emptyset$
$5 \quad u=\operatorname{Extract-Min}(Q)$
$6 \quad S=S \cup\{u\}$
7 for each vertex $v \in G . \operatorname{Adj}[u]$
$\operatorname{Relax}(u, v, w)$

Dijkstra's algorithm

(a)

(d)

(b)

(e)

(c)

(f)

Figure 24.6 The execution of Dijkstra's algorithm. The source s is the leftmost vertex. The shortest-path estimates appear within the vertices, and shaded edges indicate predecessor values. Black vertices are in the set S, and white vertices are in the min-priority queue $Q=V-S$. (a) The situation just before the first iteration of the while loop of lines $4-8$. The shaded vertex has the minimum d value and is chosen as vertex u in line 5. (b)-(f) The situation after each successive iteration of the while loop. The shaded vertex in each part is chosen as vertex u in line 5 of the next iteration. The d values and predecessors shown in part (f) are the final values.

Dijkstra's algorithm

- Dijkstra's algorithm always chooses the "lightest" or "closest" vertex in V-S to add to set S , and hence uses the greedy strategy.
- Dijkstra's algorithm resembles both breadth-first search (Read Section 22.2 by yourself) and Prim's algorithm for computing minimum spanning trees (Read Section 23.2 by yourself).
- Time Complexity of the implementation is $\mathrm{O}\left(\mathrm{V}^{\wedge} 2\right)$. If the input graph is represented using adjacency list, it can be reduced to $O(E \log V)(S e c t i o n ~ 6.5)$ with the help of binary heap and $\mathrm{O}(\mathrm{E}+\mathrm{Vlog} \mathrm{V})$ (Chapter 19) in case of Fibonacci heap.

Analysis of Dijkstra's algorithm

ShortestPath(G, v)

1. For all $v \in V, D[v]=\infty$
2. $D[s]=0$
3. For all $v \in V, P[v]=N i l$
4. Put all $v \in V$ into a data structure Q, using Q.Insert($v, D[v])$
5. while (!Q.Empty()) // Q.Empty() return Boolean value
6. $\quad \mathrm{c}=\mathrm{Q}$.removeMin()
7. for each neighbors c of v in Q do
8. $\quad w=$ weight of $(c, v) \in E$
9. if $\mathrm{D}[\mathrm{c}]+\mathrm{w}<\mathrm{D}[\mathrm{v}]$ then
10. $\quad \mathrm{D}[\mathrm{v}]=\mathrm{D}[\mathrm{c}]+\mathrm{w}$
11.

$$
P[v]=c
$$

12. \quad Q.DecreaseKey $(v, D[v])$
13. return $\mathrm{D}[\mathrm{t}]$ and optionally P

Analysis of Dijkstra's algorithm

- Running time using an array as a priority queue Q
$-=O(|\mathrm{~V}|)+\mathrm{O}(|\mathrm{V}| . t i m e$ of $\mathrm{Q} . \operatorname{Insert}())+\mathrm{O}(|\mathrm{V}|$. (time of Q.Empty() + time of Q.RemoveMin()) + |E| . (O(1) + time of Q.DecreaseKey())) $+\mathrm{O}(|\mathrm{V}|)$
$-=\mathrm{O}(|\mathrm{V}|$. (time of Q.Insert() + time of Q.Empty() + time of Q.RemoveMin()) + O (|E| . time of Q.Decreasekey())
- In case of an array, Q.Insert(), Q.Empty(), and
Q.DecreaseKey() take O(1) time, and Q.RemoveMin() takes $\mathrm{O}(\mathrm{V})$ time, so

$$
\begin{aligned}
& -=O(|V| \cdot(O(1)+O(1)+O(V))+O(|E| \cdot O(1)) \\
& -=O\left(V^{2}+E\right)=O\left(V^{2}\right)
\end{aligned}
$$

Analysis of Dijkstra's algorithm

- Running time using a heap as a priority queue Q
$-=\mathrm{O}(|\mathrm{V}|$. (time of Q.Insert() + time of Q.Empty() + time of Q.RemoveMin()) + O (|E| . time of Q.Decreasekey())
- In case of a heap, Q.Insert, Q.RemoveMin(), and
Q.DecreaseKey() take O(logV) time, and Q.Empty() takes O(1) time, so
$-=\mathrm{O}(|\mathrm{V}| .(\mathrm{O}(\log \mathrm{V})+\mathrm{O}(1)+\mathrm{O}(\log \mathrm{V}))+\mathrm{O}(|\mathrm{E}| . \mathrm{O}(\log \mathrm{V}))$
$-=\mathrm{O}(\mathrm{Vlog} \mathrm{V}+\mathrm{Elog} \mathrm{V})=\mathrm{O}(\mathrm{V}+\mathrm{E}) \log \mathrm{V}$
- If the graph is sparse, then $|\mathrm{E}|=|\mathrm{V}|$, otherwise, E $\log \mathrm{V}$ wins in comparison of $\mathrm{V} \log \mathrm{V}$ and $\mathrm{E} \log \mathrm{V}$ which beats the complexity of $\mathrm{O}\left(\mathrm{V}^{2}\right)$

Analysis of Dijkstra's algorithm

- Running time using a Fibonacci heap as a priority queue Q
$-=O(|V|$. (time of Q.Insert() + time of Q.Empty () + time of Q.RemoveMin()) + O (|E| . time of Q.Decreasekey())
- In case of a Fibonacci heap, Q.Insert and Q.Empty() take O(1) time, similarly, Q.DecreaseKey() takes O(1) amortized time, and Q .RemoveMin() takes $\mathrm{O}(\log \mathrm{V})$ time, so
$-=O(|V| \cdot(\mathrm{O}(1)+\mathrm{O}(1)+\mathrm{O}(\log \mathrm{V}))+\mathrm{O}(|\mathrm{E}| . \mathrm{O}(1))$
$-=O(V \log V+E)$
- If $|\mathrm{E}|=|\mathrm{V}|$, then $\mathrm{O}(\mathrm{Vlog} \mathrm{V}+\mathrm{E})$ becomes $\mathrm{E} \log \mathrm{E}$ which is equal to previous binary heap approach.
- If $|E|=\left|V^{2}\right|$, then $O(V \log V+E)$ becomes $O\left|V^{2}\right|$ which equal to the first version of array
- Etc.

Term Paper

- Have a look over the state-of-the-art algorithms and their issues.

1. Build a comparative study if you find similar algorithms to solve a same problem.
2. After understanding a state-of-the-art algorithmic model with its issue, try to propose a solution.
3. Criticize or negate the way, a state-of-the-art algorithm is designed.

- Your term paper should include the following as a sample:
- Title, authors profiles, abstract, keywords, introduction, methodology or design, etc; implementation, etc; discussion and issues, etc; conclusion and references.
- Deadline: before the final term paper.

Home Work \# 6

24.1-5 *

Let $G=(V, E)$ be a weighted, directed graph with weight function $w: E \rightarrow \mathbb{R}$. Give an $O(V E)$-time algorithm to find, for each vertex $v \in V$, the value $\delta^{*}(\nu)=$ $\min _{u \in V}\{\delta(u, v)\}$.

24.1-6 *

Suppose that a weighted, directed graph $G=(V, E)$ has a negative-weight cycle. Give an efficient algorithm to list the vertices of one such cycle. Prove that your algorithm is correct.

24.2-1

Run DAG-Shortest-Paths on the directed graph of Figure 24.5, using vertex r as the source.

24.3-8

Let $G=(V, E)$ be a weighted, directed graph with nonnegative weight function $w: E \rightarrow\{0,1, \ldots, W\}$ for some nonnegative integer W. Modify Dijkstra's algorithm to compute the shortest paths from a given source vertex s in $O(W V+E)$ time.

