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Background

• Algorithm: 
– A sequence of computational steps that 

transforms the input into the output.
• Analysis: 
– Performance characteristics of algorithms via time 

and space
– Existing ways of problem solving (initial state, 

transition function, final state like in AI)
– Evaluate its suitability for a particular problem 

(Using accuracy, precision, recall, etc. measures)
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Properties of Algorithms

• Independent of Hardware, Operating Systems, 
Compilers and Languages.

• Bad Design e.g. badly chosen starting point, 
repeat algorithm several times, etc. 
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Complexity

• Goal is to classify algorithms according to their 
performance characteristics e.g. Time and Space

• This can be done in two ways: 
– Method 1: Absolute Value 

• Space required: Bytes?
• Time required: Seconds?

– Second Method: 
• Size of the problem represented by n
• Independent of machine, operating system, compiler and 

language used
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Space Complexity

• How much Space required to execute an 
algorithm?
– A simple space example - adding two arrays of 

integers. Assume our array size is N and A,B are 
input arrays.

– The following code requires N+N+N=3N space:
int C[N]; 
for (int i=0; i < N; i++) 
C[i] = A[i] + B[i];
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Space Complexity

• Suppose we no longer need B - we can reuse 
it. The following code requires only N+N=2N 
space:
for (int i=0; i < N; i++) 
B[i] = A[i] + B[i];

• Space is no longer a problem
• Many algorithms compromise space 

requirements since memory is cheap
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Time Complexity

• How much time does each function require?
• Actual time (i.e. seconds) hard to measure -

varies from machine to machine and system to 
system

• Consider time as number of basic operations:
– one arithmetic op, e.g. + - *
– one assignment
– one read
– one write
– etc.
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Time Complexity
Begin //labels do not cost anything

Initialize n //1
For i=0 to n //n+2

Print i //n+1
End For //label

End //label
-----------------------------------------------------------------------------------

2n+4

• Ignore machine dependent constants instead of the actual running time
• Look at the growth of the running time.
• To express time requirements we use "Big-0" notation.
• So, final T(n) = O(n)
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Big “O” Notation

• Definition: function f(n) is O(g(n)) if there exist 
constants k and N such that for all n>=N: f(n) <= k 
* g(n).
– The notation is often confusing: f = O(g) is read "f is 

big-oh of g.“
• Generally, when we see a statement of the form 

f(n)=O(g(n)):
– f(n) is the formula that tells us exactly how many 

operations the function/algorithm in question will 
perform when the problem size is n.
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Big “O” Notation

– g(n) is like an upper bound for f(n). Within a constant 
factor, the number of operations required by your 
function is no worse than g(n).

• Why is this useful? 
– We want out algorithms to scalable. Often, we write 

program and test them on relatively small inputs. Yet, 
we expect a user to run our program with larger 
inputs. Running-time analysis helps us predict how 
efficient our program will be in the `real world'.
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Example 1
• If T(n) = 7n+100
• What is T(n) for different values of n???

• When approximating T(n) we can IGNORE the 100 term for very 
large value of n and say that T(n) can be approximated by 7(n)
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Example 2 

• T(n) = n2 + 100n + log10n +1000

• When approximating T(n) we can IGNORE the last 3 
terms and say that T(n) can be approximated by n2
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Growth Rates
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sum++;

for (i=0;i<n;++i)
sum++;

for (i=0;i<n;++i)
for (j=0;j<n;++j)

sum++;

This is O(1)

This is O(n2)

This is O(n)



Comparison of Growth Rates
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(If one operation takes 10-11 seconds)



Facts

• Gives us means for comparing algorithms.
• It tells us about the growth rate of an 

algorithm as input size becomes large.
• Its also called the asymptotic growth rate or 

asymptotic order or simply order of the 
function.
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Break
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Dynamic Programming

• An algorithmic paradigm that solves a given
complex problem by breaking it into subproblems
and stores the results of subproblems to avoid
computing the same results again.

• Following are the two main properties of a
problem that suggest that the given problem can
be solved using Dynamic programming (DP).
– Overlapping Subproblems
– Optimal Substructure
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Overlapping Subproblems

• DP is mainly used when solutions of same subproblems 
are needed again and again. 

• In DP, computed solutions to subproblems are stored in 
a table so that these don’t have to recomputed. 

• So DP is not useful when there are no common 
(overlapping) subproblems because there is no point of 
storing the solutions if they are not needed again. 

• For example, If we take example of following recursive 
program for Fibonacci Numbers, there are many 
subproblems which are solved again and again.
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Overlapping Subproblems
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Overlapping Subproblems

• Function f(3) is being called 2 times. If we 
would have stored the value of f(3), then 
instead of computing it again, we would have 
reused the old stored value. 

• There are following two different ways to 
store the values so that these values can be 
reused.
– a) Memoization (Top Down):
– b) Tabulation (Bottom Up):
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Overlapping Subproblems

• a) Memoization (Top Down): A recursive program 
that it looks into a lookup table before computing 
solutions. 

• Initialize a lookup array with NIL values. 
• Whenever we need solution to a subproblem, we 

first look into the lookup table. If the 
precomputed value is there then we return that 
value, otherwise we calculate the value and put 
the result in lookup table so that it can be reused 
later.
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Following is the memoized version 
for nth Fibonacci Number.



Overlapping Subproblems
• b) Tabulation (Bottom Up): The tabulated program for a given problem 

builds a table in bottom-up fashion and returns the last entry from table.
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Overlapping Subproblems

• Both (tabulated and Memoized) store the 
solutions of subproblems. 

• In Memoized version, table is filled on demand 
while in tabulated version, starting from the first 
entry, all entries are filled one by one. 

• Unlike the tabulated version, all entries of the 
lookup table are not necessarily filled in 
memoized version. For example, memoized
solution of LCS problem doesn’t necessarily fill all 
entries.
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Optimal Substructure

• When optimal solution of the given problem can be 
obtained using optimal solutions of its subproblems
then this is called Optimal Substructure Property.

• For example the shortest path problem has following 
optimal substructure property: If a node x lies in the 
shortest path from a source node u to destination node 
v then the shortest path from u to v is combination of 
shortest path from u to x and shortest path from x to v. 

• The standard All Pair Shortest Path algorithms 
like Floyd–Warshall and Bellman–Ford are typical 
examples of Dynamic Programming.
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Optimal Substructure
• On the other hand the Longest Path Problem 

doesn’t have the Optimal Substructure property. 
• Here by Longest Path we mean longest simple 

path (path without cycle) between two nodes. 
• Consider the following unweighted graph. There 

are two longest paths from q to t: q -> r ->t and q 
->s->t. 

• Unlike shortest paths, these longest paths do not 
have the optimal substructure property. 

• For example, the longest path q->r->t is not a 
combination of longest path from q to r and 
longest path from r to t, because the longest 
path from q to r is q->s->t->r.
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Matrix Chain Multiplication

• Problem: Given a sequence of matrices, find 
the most efficient way to multiply these 
matrices together.

• The problem is not actually to perform the 
multiplications, but merely to decide in which 
order to perform the multiplications.
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Matrix Chain Multiplication
• As matrix multiplication is associative, so no matter how we 

parenthesize the product, the result will be the same. For example, 
if we had four matrices A, B, C, and D, we would have:
(ABC)D = (AB)(CD) = A(BCD) = ....

• However, the order in which we parenthesize the product affects 
the number of simple arithmetic operations needed to compute the 
product, or the efficiency. 

• For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, and 
C is a 5 × 60 matrix. Then,

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations 
A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations. 

• Clearly the first parenthesization requires a smaller number of 
operations.
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Matrix Chain Multiplication
• Given an array p[] which represents the chain of matrices 

such that the ith matrix Ai is of dimension p[i-1] x p[i]. 
• We need to write a function MatrixChainOrder() that 

should return the minimum number of multiplications 
needed to multiply the chain.
Input: p[] = {40, 20, 30, 10, 30} 
Output: 26000 

• There are 4 matrices of dimensions 40x20, 20x30, 30x10 
and 10x30. 

• Let the input 4 matrices be A, B, C and D. 
• The minimum number of multiplications are obtained by 

putting parenthesis in following way 
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30
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Matrix Chain Multiplication

• Input: p[] = {10, 20, 30, 40, 30} Output: 30000
– There are 4 matrices of dimensions 10x20, 20x30, 

30x40 and 40x30. 
– Let the input 4 matrices be A, B, C and D. 
– The minimum number of multiplications are obtained 

by putting parenthesis in following way 
((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30

• Input: p[] = {10, 20, 30} Output: 6000 
– There are only two matrices of dimensions 10x20 and 

20x30. So there is only one way to multiply the 
matrices, cost of which is 10*20*30
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Matrix Chain Multiplication
• Optimal Substructure:
– In a chain of matrices of size n, we can place the first 

set of parenthesis in n-1 ways. 
– For chain ABCD, then there are 3 ways to place first 

set of parenthesis e.g. A(BCD), (AB)CD and (ABC)D. 
– Placing a set of parenthesis is division of problem into 

subproblems of smaller size known as optimal 
substructure property and can be easily solved using 
recursion.

– Minimum number of multiplication for a chain of size 
n = Minimum among all n-1 placements
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•
O

verlapping Subproblem
s:Follow

ing 
is a recursive im

plem
entation that 

sim
ply follow

s the above optim
al 

substructure property.
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Matrix Chain Multiplication

• Time complexity of the naive recursive 
approach is exponential. 

• Following is the recursion tree for a matrix 
chain of size 4. 

• It should be noted that the function computes 
the same subproblems again and again. 
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Matrix Chain Multiplication
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• Calling of same subproblems again is Overlapping 
Subproblems property. 

• Matrix Chain Multiplication (MCM) problem has both 
properties of a dynamic programming (DP). 

• Like other typical DP problems, re-computations of same 
subproblems can be avoided by constructing a temporary 
array m[][] in bottom-up manner.

http://www.geeksforgeeks.org/archives/tag/dynamic-programming


• Dynamic 
Programming 
Solution:
Following is C/C++ 
implementation 
for MCM problem 
using DP.

• Time Complexity: 
O(n^3)
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Cormen’s Slides
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Read it Yourself
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Assignment # 1
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