
Advanced Analysis of Algorithms

Dr. Qaiser Abbas
Department of Computer Science & IT,

University of Sargodha, Sargodha, 40100, Pakistan
qaiser.abbas@uos.edu.pk

10/24/2014 1

Background

• Algorithm:
– A sequence of computational steps that

transforms the input into the output.
• Analysis:
– Performance characteristics of algorithms via time

and space
– Existing ways of problem solving (initial state,

transition function, final state like in AI)
– Evaluate its suitability for a particular problem

(Using accuracy, precision, recall, etc. measures)

10/24/2014 2

Properties of Algorithms

• Independent of Hardware, Operating Systems,
Compilers and Languages.

• Bad Design e.g. badly chosen starting point,
repeat algorithm several times, etc.

10/24/2014 3

Complexity

• Goal is to classify algorithms according to their
performance characteristics e.g. Time and Space

• This can be done in two ways:
– Method 1: Absolute Value

• Space required: Bytes?
• Time required: Seconds?

– Second Method:
• Size of the problem represented by n
• Independent of machine, operating system, compiler and

language used

10/24/2014 4

Space Complexity

• How much Space required to execute an
algorithm?
– A simple space example - adding two arrays of

integers. Assume our array size is N and A,B are
input arrays.

– The following code requires N+N+N=3N space:
int C[N];
for (int i=0; i < N; i++)
C[i] = A[i] + B[i];

10/24/2014 5

Space Complexity

• Suppose we no longer need B - we can reuse
it. The following code requires only N+N=2N
space:
for (int i=0; i < N; i++)
B[i] = A[i] + B[i];

• Space is no longer a problem
• Many algorithms compromise space

requirements since memory is cheap

10/24/2014 6

Time Complexity

• How much time does each function require?
• Actual time (i.e. seconds) hard to measure -

varies from machine to machine and system to
system

• Consider time as number of basic operations:
– one arithmetic op, e.g. + - *
– one assignment
– one read
– one write
– etc.

10/24/2014 7

Time Complexity
Begin //labels do not cost anything

Initialize n //1
For i=0 to n //n+2

Print i //n+1
End For //label

End //label

2n+4

• Ignore machine dependent constants instead of the actual running time
• Look at the growth of the running time.
• To express time requirements we use "Big-0" notation.
• So, final T(n) = O(n)

10/24/2014 8

Big “O” Notation

• Definition: function f(n) is O(g(n)) if there exist
constants k and N such that for all n>=N: f(n) <= k
* g(n).
– The notation is often confusing: f = O(g) is read "f is

big-oh of g.“
• Generally, when we see a statement of the form

f(n)=O(g(n)):
– f(n) is the formula that tells us exactly how many

operations the function/algorithm in question will
perform when the problem size is n.

10/24/2014 9

Big “O” Notation

– g(n) is like an upper bound for f(n). Within a constant
factor, the number of operations required by your
function is no worse than g(n).

• Why is this useful?
– We want out algorithms to scalable. Often, we write

program and test them on relatively small inputs. Yet,
we expect a user to run our program with larger
inputs. Running-time analysis helps us predict how
efficient our program will be in the `real world'.

10/24/2014 10

Example 1
• If T(n) = 7n+100
• What is T(n) for different values of n???

• When approximating T(n) we can IGNORE the 100 term for very
large value of n and say that T(n) can be approximated by 7(n)

10/24/2014 11

Example 2

• T(n) = n2 + 100n + log10n +1000

• When approximating T(n) we can IGNORE the last 3
terms and say that T(n) can be approximated by n2

10/24/2014 12

Growth Rates

10/24/2014 13

sum++;

for (i=0;i<n;++i)
sum++;

for (i=0;i<n;++i)
for (j=0;j<n;++j)

sum++;

This is O(1)

This is O(n2)

This is O(n)

Comparison of Growth Rates

10/24/2014 14

(If one operation takes 10-11 seconds)

Facts

• Gives us means for comparing algorithms.
• It tells us about the growth rate of an

algorithm as input size becomes large.
• Its also called the asymptotic growth rate or

asymptotic order or simply order of the
function.

10/24/2014 15

Break

10/24/2014 16

Dynamic Programming

• An algorithmic paradigm that solves a given
complex problem by breaking it into subproblems
and stores the results of subproblems to avoid
computing the same results again.

• Following are the two main properties of a
problem that suggest that the given problem can
be solved using Dynamic programming (DP).
– Overlapping Subproblems
– Optimal Substructure

10/24/2014 17

Overlapping Subproblems

• DP is mainly used when solutions of same subproblems
are needed again and again.

• In DP, computed solutions to subproblems are stored in
a table so that these don’t have to recomputed.

• So DP is not useful when there are no common
(overlapping) subproblems because there is no point of
storing the solutions if they are not needed again.

• For example, If we take example of following recursive
program for Fibonacci Numbers, there are many
subproblems which are solved again and again.

10/24/2014 18

Overlapping Subproblems

10/24/2014 19

Overlapping Subproblems

• Function f(3) is being called 2 times. If we
would have stored the value of f(3), then
instead of computing it again, we would have
reused the old stored value.

• There are following two different ways to
store the values so that these values can be
reused.
– a) Memoization (Top Down):
– b) Tabulation (Bottom Up):

10/24/2014 20

Overlapping Subproblems

• a) Memoization (Top Down): A recursive program
that it looks into a lookup table before computing
solutions.

• Initialize a lookup array with NIL values.
• Whenever we need solution to a subproblem, we

first look into the lookup table. If the
precomputed value is there then we return that
value, otherwise we calculate the value and put
the result in lookup table so that it can be reused
later.

10/24/2014 21

10/24/2014 22

Following is the memoized version
for nth Fibonacci Number.

Overlapping Subproblems
• b) Tabulation (Bottom Up): The tabulated program for a given problem

builds a table in bottom-up fashion and returns the last entry from table.

10/24/2014 23

Overlapping Subproblems

• Both (tabulated and Memoized) store the
solutions of subproblems.

• In Memoized version, table is filled on demand
while in tabulated version, starting from the first
entry, all entries are filled one by one.

• Unlike the tabulated version, all entries of the
lookup table are not necessarily filled in
memoized version. For example, memoized
solution of LCS problem doesn’t necessarily fill all
entries.

10/24/2014 24

http://en.wikipedia.org/wiki/Longest_common_subsequence_problem

Optimal Substructure

• When optimal solution of the given problem can be
obtained using optimal solutions of its subproblems
then this is called Optimal Substructure Property.

• For example the shortest path problem has following
optimal substructure property: If a node x lies in the
shortest path from a source node u to destination node
v then the shortest path from u to v is combination of
shortest path from u to x and shortest path from x to v.

• The standard All Pair Shortest Path algorithms
like Floyd–Warshall and Bellman–Ford are typical
examples of Dynamic Programming.

10/24/2014 25

http://en.wikipedia.org/wiki/Floyd%E2%80%93Warshall_algorithm
http://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm

Optimal Substructure
• On the other hand the Longest Path Problem

doesn’t have the Optimal Substructure property.
• Here by Longest Path we mean longest simple

path (path without cycle) between two nodes.
• Consider the following unweighted graph. There

are two longest paths from q to t: q -> r ->t and q
->s->t.

• Unlike shortest paths, these longest paths do not
have the optimal substructure property.

• For example, the longest path q->r->t is not a
combination of longest path from q to r and
longest path from r to t, because the longest
path from q to r is q->s->t->r.

10/24/2014 26

Matrix Chain Multiplication

• Problem: Given a sequence of matrices, find
the most efficient way to multiply these
matrices together.

• The problem is not actually to perform the
multiplications, but merely to decide in which
order to perform the multiplications.

10/24/2014 27

Matrix Chain Multiplication
• As matrix multiplication is associative, so no matter how we

parenthesize the product, the result will be the same. For example,
if we had four matrices A, B, C, and D, we would have:
(ABC)D = (AB)(CD) = A(BCD) =

• However, the order in which we parenthesize the product affects
the number of simple arithmetic operations needed to compute the
product, or the efficiency.

• For example, suppose A is a 10 × 30 matrix, B is a 30 × 5 matrix, and
C is a 5 × 60 matrix. Then,

(AB)C = (10×30×5) + (10×5×60) = 1500 + 3000 = 4500 operations
A(BC) = (30×5×60) + (10×30×60) = 9000 + 18000 = 27000 operations.

• Clearly the first parenthesization requires a smaller number of
operations.

10/24/2014 28

Matrix Chain Multiplication
• Given an array p[] which represents the chain of matrices

such that the ith matrix Ai is of dimension p[i-1] x p[i].
• We need to write a function MatrixChainOrder() that

should return the minimum number of multiplications
needed to multiply the chain.
Input: p[] = {40, 20, 30, 10, 30}
Output: 26000

• There are 4 matrices of dimensions 40x20, 20x30, 30x10
and 10x30.

• Let the input 4 matrices be A, B, C and D.
• The minimum number of multiplications are obtained by

putting parenthesis in following way
(A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30

10/24/2014 29

Matrix Chain Multiplication

• Input: p[] = {10, 20, 30, 40, 30} Output: 30000
– There are 4 matrices of dimensions 10x20, 20x30,

30x40 and 40x30.
– Let the input 4 matrices be A, B, C and D.
– The minimum number of multiplications are obtained

by putting parenthesis in following way
((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30

• Input: p[] = {10, 20, 30} Output: 6000
– There are only two matrices of dimensions 10x20 and

20x30. So there is only one way to multiply the
matrices, cost of which is 10*20*30

10/24/2014 30

Matrix Chain Multiplication
• Optimal Substructure:
– In a chain of matrices of size n, we can place the first

set of parenthesis in n-1 ways.
– For chain ABCD, then there are 3 ways to place first

set of parenthesis e.g. A(BCD), (AB)CD and (ABC)D.
– Placing a set of parenthesis is division of problem into

subproblems of smaller size known as optimal
substructure property and can be easily solved using
recursion.

– Minimum number of multiplication for a chain of size
n = Minimum among all n-1 placements

10/24/2014 31

•
O

verlapping Subproblem
s:Follow

ing
is a recursive im

plem
entation that

sim
ply follow

s the above optim
al

substructure property.

10/24/2014 32

Matrix Chain Multiplication

• Time complexity of the naive recursive
approach is exponential.

• Following is the recursion tree for a matrix
chain of size 4.

• It should be noted that the function computes
the same subproblems again and again.

10/24/2014 33

Matrix Chain Multiplication

10/24/2014 34

• Calling of same subproblems again is Overlapping
Subproblems property.

• Matrix Chain Multiplication (MCM) problem has both
properties of a dynamic programming (DP).

• Like other typical DP problems, re-computations of same
subproblems can be avoided by constructing a temporary
array m[][] in bottom-up manner.

http://www.geeksforgeeks.org/archives/tag/dynamic-programming

• Dynamic
Programming
Solution:
Following is C/C++
implementation
for MCM problem
using DP.

• Time Complexity:
O(n^3)

10/24/2014 35

Cormen’s Slides

10/24/2014 36

Read it Yourself

10/24/2014 37

Assignment # 1

10/24/2014 38

Reading

• Abo-Sinna, Mahmoud. (2004). Multiple
objective (fuzzy) dynamic programming
problems: A survey and some applications.
Applied Mathematics and Computation. 157.
861-888.

• Has Dynamic Programming Improved Decision
Making?, John Rust, Annual Review of
Economics 2019 11:1, 833-858

10/24/2014 39

https://www.annualreviews.org/doi/abs/10.1146/annurev-economics-080218-025721

